簡易檢索 / 詳目顯示

研究生: 曾思憲
Ssu-Hsien
論文名稱: 感應馬達主動型狀態估測系統之研發
Development of a Proactive Condition Monitoring System for Induction Motors
指導教授: 張宏展
Hong-Chan Chang
口試委員: 張宏展
Hong-Chan Chang
吳瑞南
Ruay-Nan Wu
郭政謙
Cheng-Chien Kuo
陳鴻誠
Hung-Cheng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 138
中文關鍵詞: 感應馬達運維策略狀態監測故障診斷振動參數電器參數模糊演算法倒傳遞類神經網路
外文關鍵詞: O&M Strategy, Vibrational Parameters, Electrical Parameters, ISO 10816, Back Propagation Neural Network.
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感應馬達具有廉價、堅固耐用的特性,因此被廣泛應用在各工業領域中,在任何工廠中更是不可或缺的動力來源。目前,大部分工廠採取基於時間性定期保養的運維策略,若將運維策略提升到狀態性保養或主動性保養,即可得知電動機即時的運轉狀態,一旦有問題,馬上進行故障診斷,提早使維修人員進行馬達維護與故障排除,即可避免突發事故的發生,提升運轉可靠度,達到工廠穩定生產之目的。
    本文旨在提出一系列適用於不同場域、需求的感應馬達之狀態監測系統,包含標準參照監測系統、同機參照監測系統及故障預診斷監測系統。將馬達運轉狀態分為良好、注意、警戒及危險四區域,當狀態達到注意或以上時啟動故障診斷分析模組來辨別馬達故障部位,達到能預知報警,快速維修之效。本研究利用感應馬達運轉時產生之振動訊號及電氣訊號推算出振動參數及電氣參數,統計挑選出適合應用於狀態監測系統與故障診斷分析模組的參數,建立基於規範ISO 10816之狀態監測方法。再分別利用模糊演算法及類神經網路建立故障診斷分析模組,最後經過馬達故障模型之數值比對驗證其有效性。


    Induction motors are cheap, rugged and durable, therefore widely used in various industrial fields and are an indispensable power source in any factory. At present, most factories adopt an O&M(Operation and Maintenance) strategy based on “Time-Based Maintenance”. If the O&M strategy is upgraded to “Condition-Based Maintenance” or “Proactive Maintenance”, the motors’ condition will be real-time monitored, and if there is any problem, the fault diagnosis will be carried out immediately.
    The purpose of this thesis is to propose a series of condition monitoring systems for induction motors with different fields and requirements, including standard reference monitoring system, same-machine reference monitoring system and fault pre-diagnosis monitoring system. The motor operating condition is divided into four areas: normal, caution, warning and danger. When the condition reaches caution or above, the fault diagnosis module is activated to diagnose motor faults, to achieve predictable alarms and fast maintenance. In this study, vibrational and electrical parameters are calculated from the vibrational signals and electrical signals which are generated during the operation of the induction motor. Parameters suitable for the condition monitoring system and the fault diagnosis module are statistically selected and the condition monitoring method based on the ISO 10816 is established. Then the fault diagnosis module was developed using fuzzy algorithm and neural network respectively. Finally, the numerical comparison of the motor fault model was used to verify its effectiveness.

    中文摘要 Abstract 誌 謝 目 錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景與動機 1.2 研究方法及範疇 1.3 文獻探討 1.4 章節概述 第二章 狀態監測相關規範與智慧計算簡介 2.1 前言 2.2 感應電機狀態監測相關規範整理 2.2.1 振動訊號相關規範 2.2.2 電氣訊號相關規範 2.2.3 軸承溫度相關規範 2.3 振動規範ISO 10816-3簡介 2.3.1 標準參照法(絕對門檻) 2.3.2 同機參照法(相對門檻值) 2.4 模糊理論 2.4.1 理論基礎 2.4.2 模糊化 2.4.3 規則庫與權重值 2.4.4 模糊推論引擎 2.4.5 解模糊化 2.5 類神經網路 2.5.1 倒傳遞神經網路 第三章 運轉狀態及故障診斷指標選用 3.1 前言 3.2 電機常見故障類型及研製實驗模型 3.2.1 定子故障模型 3.2.2 軸承故障模型 3.2.3 對心故障模型 3.2.4 轉子故障模型 3.3 量測平台介紹及訊號量測、處理 3.3.1 測量平台系統架構 3.3.2 訊號擷取 3.3.3 訊號處理 3.4 計算參數與其用途 3.4.1 振動參數 3.4.2 電氣參數 3.5 特徵參數統計結果及指標之選用 3.5.1 振動參數統計結果 3.5.2 電氣參數統計結果 3.5.3 運轉狀態監測指標選用 3.5.4 故障診斷分析指標選用 第四章 狀態監測系統之建立 4.1 前言 4.2 標準參照之狀態監測系統 4.2.1 標準參照 4.2.2 指標監測模組設定 4.2.3 軸承溫度監測模組 4.2.4 過載監測模組 4.2.5 馬達運轉狀態取決 4.3 同機參照之狀態監測系統 4.3.1 同機參照 4.3.2 模糊系統設定 4.4 具潛期故障預知之狀態監測系統 4.4.1 設計緣由 4.4.2 設計方法 4.4.3 模糊系統設計 4.5 故障診斷分析模組設計 4.5.1 利用模糊理論設計故障診斷分析模組 4.5.2 利用類神經網路設計故障診斷分析模組 第五章 實驗案例分析與討論 5.1 數據來源及前置作業 5.2 狀態監測系統實驗結果及比較 5.2.1 標準參照狀態監測系統實驗結果 5.2.2 同機參照狀態監測系統 5.2.3 具潛期故障預知狀態監測系統 5.2.4 結論 5.3 模糊推理故障診斷分析模組實驗結果及比較 5.3.1 純振動指標故障分析模組實驗結果 5.3.2 純電氣指標故障分析模組實驗結果 5.3.3 混合振動電氣指標故障分析模組實驗結果 5.4 類神經網路故障診斷分析模組實驗結果及比較 5.4.1 純振動指標故障分析模組實驗結果 5.4.2 純電氣指標故障分析模組實驗結果 5.4.3 混合振動電氣指標故障分析模組實驗結果 5.5 總結與討論 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] Jaafar, A. (2012). Vibration Analysis and Diagnostic Guide. Iraq, Basrah: Researchgate.
    [2] ISO 10816-1, “Mechanical vibration – evaluation of machine vibration by measurements on non-rotating parts – Part 1: General guidelines,” 1998.
    [3] Rene de J. Romero-Troncoso, “Multirate Signal Processing to Improve FFT-based Analysis for Detecting Faults in Induction Motors,” IEEE Transactions on Industrial Informatics, Vol. 13, No. 3, June, 2017.
    [4] Siliang Lu, Qingbo He, Fei Hu, Fanrang Kong, “Sequential Multiscale Noise Tuning Stochastic Resonance for Train Bearing Fault Diagnosis in an Embedded System,” IEEE Transaction on Instrument and Measurement, Vol. 63, No. 1, Jan, 2014.
    [5] Diego Coronado and Katharina Fischer, “Condition Monitoring of Wind Turbines: State of the Art, User Experience and Recommendation,” Fraunhofer Institute for Wind Energy and Energy System Technology IWES, January 2015.
    [6] 蔡有藤,陳宗傑,廖哲賢,「機械系統性能衰退預測與故障診斷之研究」,技術學刊,2012年,第121-129頁。
    [7] 彭善謙,「綜合振動信號於馬達故障診斷」,碩士論文,中原大學,2004年。
    [8] Snail Haroun, Amirouche N. S., Said Touati, “Multiple features extraction and selection for detection and classification of stator winding faults,” IET Electric Power Applications, Vol. 12, No. 3, pp. 339-346, March, 2018.
    [9] Hong Chan Chang, Shang C. Lin, Cheng C. Kuo, and Tzu C. Hsu, “Accessing Motor Conditions by Using Electrical and Vibrational Detection Methods,” International Conference on Engineering and Natural Science, Tokyo, Japan, July 2015, pp.41-58.
    [10] Subhasis Nandi, Hamid A. Toliyat, and X. Li, “Condition Monitoring and Fault Diagnosis of Electrical Motors – A Review,” IEE Transactions on Energy Conversion, Vol. 20, No. 4, Dec., 2011.
    [11] ISO 7919-1, “Mechanical vibration of non-reciprocating machines –Measurements on rotating shafts and evaluation criteria – Part1: General guidelines,” 1996.
    [12] ISO 7919-3, “Mechanical vibration of non-reciprocating machines –Measurements on rotating shafts – Part 3: Coupled industrial machines,” 2009.
    [13] ISO 2954, “Mechanical vibration of rotating and reciprocating machinery – Requirements for instruments for measuring vibration severity,” 2012.
    [14] IEC 60034-14, “Mechanical vibration of certain machines with shaft heights 56mm and higher – Measurement, evaluation and limits of vibration severity,” 2007.
    [15] ISO 13372-1, “Condition monitoring and diagnostics of machines – Vibration condition monitoring – Part 1: General procedures,” 2002.
    [16] ISO 13372-2, “Condition monitoring and diagnostics of machines – Vibration condition monitoring – Part 2: Processing, analysis and presentation of vibration data,” 2002.
    [17] VDI 2056, “Standards Of Evaluation For Mechanical Vibrations Of Machines,” 1964.
    [18] 林芝以,「運用電氣訊號於感應馬達狀態監測與故障診斷之研究」,碩士論文,台灣科技大學電機工程學系,2016年。
    [19] IEC 60034-1, “Rotating electrical machines,” 2004.
    [20] IEC 60034-26, “Effects of unbalanced voltages on the performance of three-phase cage induction motors,” 2006.
    [21] NEMA Std. MG 1, “Motors and Generators,” 2009.
    [22] IEEE Std. 112, “IEEE Standard Test Procedure for Polyphase Induction Motors and Generators,” 2004.
    [23] IEEE Std. 519, “IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems,” 2014.
    [24] ISO 10816-3, “Mechanical vibration – evaluation of machine vibration by measurements on non-rotating parts – Part 3: Industrial machines with nominal power above 15 kW and nominal speeds between 120 r/min and 15 000 r/min when measured in situ,” 1998.
    [25] L. A. Zadeh, “Fuzzy sets,” Informational and Control, Vol. 8, No. 3, pp. 338-353, 1965.
    [26] 林上智,「基於模糊理論之旋轉電機故障診斷與狀態監測系統研究」,博士論文,台灣科技大學電機工程學系,2016年。
    [27] Singh GK, Al Kazzaz SAS, “Induction Machine Drive Condition Monitoring and Diagnostic Research—A Survey,” Electric Power System Research, Vol. 64, No. 2, pp. 145–158, 2003.
    [28] Pinjia Zhang, Yi Du, and Thomas G. Habetler, “A Survey of Condition Monitoring and Protection Methods for Medium – Voltage Induction Motors,” IEEE Transactions on Industry Applications, Vol. 47, No. 1, January/February, 2011.
    [29] W. S. Gongora, H. V. D Silva, A. Goedtel, W. F. Godoy, and S. A. O. da Silva, “Neural approach for bearing fault detection in three phase induction motors,” IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), 2013, pp. 566-572.
    [30] Agam G., Gurmeet Singh, and V.N.A. Naikan, “Effective combination of motor fault diagnosis techniques,” 2018 International Conference on Power, Instrumentation, Control and Computing (PICC), Thrissur, India, Jan, 2018.
    [31] 徐子權,「電氣與振動檢測法於馬達狀態評估之研究」,碩士論文,國立台灣科技大學,2014年。
    [32] 呂錦河,「基於模糊理論研製具故障診斷功能之感應馬達狀態監測嵌入式系統」,碩士論文,國立台灣科技大學,2017年。
    [33] Mobius, “Vibration Analysis Definitions,” April 2018, www.mobiusinstitute.com
    [34] 賴宥宏,「基於模糊理論研製具故障診斷功能之感應馬達狀態監測嵌入式系統」,碩士論文,國立台北科技大學,2009年。
    [35] William R. Finley, Barton J. Sauer, and Moheb Loutfi, “Motor Vibration Problems: How to Diagnose and Correct Vibration Errors,” IEEE Transactions on Industry Applications, Vol. 21, No. 6, pp. 14-28, Nov/Dec, 2015.
    [36] Mikhail Tsypkin, “The Origin of the Electromagnetic Vibration of Induction Motors Operating in Modern Industry: Practical Experience – Analysis and Diagnostics,” IEEE Transactions on Industry Applications, Vol. 53, No. 2, pp. 1669-1676, March/April, 2017.
    [37] Romero de S. A., Helder de P., Ronaldo de A. R., Lane M. R. Baccarini, and Anderson V. R., “Premature Wear and Recurring Bearing Failures in an Inverter – Driven Induction Motor – Part 1 :Investigation of the Problem,” IEEE Transactions on Industry Applications, Vol. 51, No. 6, Nov/Dec, 2015.
    [38] Sukhjeet S., Navin Kumar, “Detection of Bearing Faults in Mechanical Systems Using Stator Current Monitoring,” IEEE Transactions on Industrial Informatics, Vol. 13, No. 3, pp. 1341-1349, June, 2017.
    [39] N. Rama Devi, D. V. S. S. Siva Sarma, P. V. Ramana Rao, “Diagnosis and classification of stator winding insulation faults on a three-phase induction motor using wavelet and MNN,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 23, No. 5, pp. 2543-2555, Nov, 2016.

    無法下載圖示 全文公開日期 2023/07/26 (校內網路)
    全文公開日期 2028/07/26 (校外網路)
    全文公開日期 2028/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE