簡易檢索 / 詳目顯示

研究生: 吳承叡
CHENG-RUEI WU
論文名稱: 使用步階式氣隙電感實現高峰值輸出功率之電源轉換器
Using Stepped Air-Gap inductor for Power Converter of High Peak Power Output
指導教授: 林景源
Jing-Yuan Lin
口試委員: 邱煌仁
Huang-Jen Chiu
張佑丞
Yu-chen chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 64
中文關鍵詞: 功率因數修正峰值功率步階式氣隙之鐵氧體鐵芯電感
外文關鍵詞: Power factor corrector, Peak power, Stepped air-gap ferrite inductor
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電源轉換器於許多電動機械的應用中如:馬達、發電機、風扇等在設計時皆有高於常規輸出瓦數之規格需求,通常設計規格會為兩倍至三倍的峰值功率下進行設計。基於磁性元件飽和曲線之特性,電源供應器容易因此因素而失去高功率密度之優點。因此本論文以步階式氣隙之鐵氧體磁芯進行設計與分析,並以Maxwell Analysis有限元素模擬分析軟體進行驗證,最終應用於前級之功率因數修正器之中,達成在保持原體積、效率、iTHD的條件下,將設計於最大功率1 kW之功率因數修正器提升至峰值功率2 kW。


    Power converter are used in many electromechanical applications such as motors, generator, high-voltage pumps, etc. which output power is usually designed by the specifications of two or three times than its peak surge power. The engineer should take two to three times of the normal output wattage as peak surge power specification. Based on the saturation curve characteristics of the magnetic element, the power supply is likely to lose the advantage of high power density. This thesis uses stepped air-gap ferrite inductor as PFC choke. And analyze with Maxwell Analysis finite element simulation software for verification. Finally, the original volume, efficiency, and iTHD of the PFC are maintained. And the thesis was upgraded from the maximum power of 1kW to the surge power of 2kW.

    摘要 Abstract 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 章節大綱 第二章 功率因數修正器架構與電感分析與設計 2.1 總諧波失真與功率因數之定義 2.2 傳統氣隙電感數學模型 2.3 傳統氣隙電感設計流程 第三章 LLC型半橋諧振式轉換器 3.1 LLC型半橋諧振式轉換器原理 3.2 LLC型半橋諧振式轉換器於峰值功率之評估 第四章 步階式氣隙電感之分析 4.1 步階式氣隙電感感值推導 4.1.1 步階式氣隙電感第一階段電感感值推導 4.1.2 步階式氣隙電感第二階段電感感值推導 4.1.3 步階式氣隙電感第三階段電感感值推導 第五章 步階式氣隙電感設計與分析 5.1 步階式氣隙電感設計流程 5.2 步階式氣隙電感設計與分析 第六章 實驗結果與數據比較 6.1 傳統氣隙電感與步階式氣隙電感實測 6.2 實驗波形與數據比較 第七章 結論與未來展望 7.1 結論 7.2 未來展望 參考文獻

    [1] 岳軒宇,步階式氣隙變壓器用於LLC型半橋諧振式轉換器,國立臺灣科技大學電子工程學系碩士論文,2017年。
    [2] 朱岑恩,利用步階式氣隙電感達成縮小臨界導通模式升壓型功率因數修正器電感鐵芯尺寸之研製,國立臺灣科技大學電子工程學系碩士論文,2019年。
    [3] G. Di Capua, N. Femia, K. Stoyka, “Validation of inductors sustainablesaturation-operation in switching power supplies design,” in Proc ICIT,pp. 242-247, Mar. 2017.
    [4] G. Di Capua, N. Femia, K. Stoyka, M. Lodi, A. Oliveri, M. Storace , “Ferrite inductor models for switch-mode power supplies analysis and design”, in Proc SMACD. ,pp. 1-4, Jun. 2017.
    [5] G. Di Capua, N. Femia, “A Novel Method to Predict the Real Operation of Ferrite Inductors with Moderate Saturation in Switching Power Supplies Applications”, in IEEE Transactions on Power Electronics ,pp. 2456-2464, Mar. 2016.
    [6] E. Stenglein, D. Kuebrich and M. Albach, "Prediction of the non-linear behavior of a stepped air gap inductor", in Proc COMPEL ,pp. 1-6, Jun. 2016.
    [7] K. Stoyka, G. D. Capua, N. Femia ” Modeling of Stepped Air-Gap Ferrite Inductors in Switching Power Supplies,” in Proc ICECS,pp. 401-404, Dec. 2018.
    [8] P. Mantzanas, D. Kuebrich, M. Barwig and T. Duerbaum, "Analysis of the Flyback Converter Utilizing a Transformer with Stepped Air-Gap", in Proc PCIM ,pp. 1-8, May. 2016.
    [9] W. Wolfle, W. G. Hurley and S. Arnold, “Power factor correction for AC-DC converters with cost effective inductive filtering”, in Proc IEEE 31st Annual Power Electr ,pp. 332-337, Jun. 2000.
    [10] P. Mantzanas, M. Barwig and T. Duerbaum, "Analytical calculation of the flyback converter utilizing a transformer with saturable magnetizing inductance," in Proc COMPEL ,pp. 1-7, Jun. 2016.
    [11] L. Milner, G. A. Rincon-Móra, “Small saturating inductors for more compact switching Power Supplies”, in IEEJ Trans. ,pp. 69-73, Jan. 2012.
    [12] G. Di Capua, N. Femia, K. Stoyka, “Switching power supplies with ferrite inductors in sustainable saturation operation”, in Journal of Electrical Power and Energy Systems. ,pp. 494-505, Dec. 2017.
    [13] G. Di Capua, N. Femia, K. Stoyka, “A Generalized Numerical Method for Ferrite Inductors Analysis in High Current Ripple Operation”, in VLSI Journal ,pp. 473-484, Jun. 2017.
    [14] W. Wolfle, W. G. Hurley and S. Arnold, “Power factor correction for AC-DC converters with cost effective inductive filtering”, in Proc IEEE 31st Annual Power Electr ,pp. 332-337, Jun. 2000.
    [15] R. Shafaei, M.C G. Perez ,M. Ordonez, ”Planar Transformers in LLC Resonant Converters: High-Frequency Fringing Losses Modeling,” IEEE Trans Power Electronics , Volume. 35,no. 9 pp. 9632-9649, Spe 2020.
    [16] W A. Roshen, ” Fringing Field Formulas and Winding Loss Due to an Air Gap,” IEEE Trans Magnetics, Volume. 43,no. 8 pp. 3387-3394, Aug 2007.
    [17] Micro Commercial Components Inc, GBJ5010 - Glass Passivated Bridge Rectifier,available on line, https://www.mccsemi.com/ProductCategories/ProductDetails?productName=GBJ5010&productType=BridgeRectifier
    [18] STMicroelectronics Inc, STW70N65M2 - MDmesh M2 Power MOSFET, available on line, https://www.st.com/content/st_com/en/products/power-transistors/power-mosfets/stpower-n-channel-mosfets-gt-350-v-to-700-v/mdmesh-m2-series/stw70n65m2.html
    [19] Cree Inc, CVFD20065A - Discrete SiC Schottky Diodes,available on line, https://www.wolfspeed.com/downloads/dl/file/id/89/product/654/cvfd20065a.pdf
    [20] Infineon Inc, IPW60R040CFD7 - Resonant high power topologies,available on line, https://www.infineon.com/cms/en/product/power/mosfet/500v-900v-coolmos-n-channel-power-mosfet/600v-coolmos-n-channel-power-mosfet/ipw60r040cfd7/
    [21] Infineon Inc, BSC035N10NS5 - Optimized for synchronous rectification,available on line, https://www.infineon.com/cms/en/product/power/mosfet/12v-300v-n-channel-power-mosfet/bsc035n10ns5/

    無法下載圖示 全文公開日期 2024/09/27 (校內網路)
    全文公開日期 2024/09/27 (校外網路)
    全文公開日期 2024/09/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE