簡易檢索 / 詳目顯示

研究生: 陳翰圻
Han-Chi Chen
論文名稱: 極小型永磁式風力發電機系統之研製
Development of Very Small-scale Permanent-magnet Wind Generator System
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
林長華
Chang-Hua Lin
林法正
Faa-Jeng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 76
中文關鍵詞: 三相永磁式同步電機三相三臂型雙向功率轉換器數位霍爾效應偵測元件
外文關鍵詞: three-phase permanent-magnet synchronous generat, three-phase three-lag bidirectional power conver, digital Hall-effect sensor.
相關次數: 點閱:250下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在研製極小型三相永磁式同步風力發電機及其驅動系統,包括水平軸型葉片、永磁式同步電機,以及電動機與發電機模式下運轉所需之雙向功率轉換器。本研究使用有限元素分析軟體Maxwell/2D分析永磁式同步發電機,並比較不同極數與佔磁比下之感應電動勢相電壓的總諧波失真率,以完成幾何結構的設計與實作。文中提出三相三臂型雙向功率轉換器之六步方波控制,以驅動三相永磁式同步電機。其中,在電動機模式下,本系統使用轉速閉迴路控制策略;而在發電機模式方面,則採電流閉迴路及最大功率追蹤控制,可調節出不同風速之最佳電流命令。另外,本文採用數位霍爾效應元件的信號作六步方波區間判斷及轉速的回授,可降低成本;而水平軸三葉型葉片之使用,則有周速比高、啟動轉矩低之優點,意即在低風速的環境下可順利達到期望的發電機轉速,並抽取功率。
三相永磁式同步電機在發電機模式於180 rpm的感應電動勢峰值分析結果為11.51 V,總諧波失真率為1.46 %,其對應之實測值為11.43 V 及1.60 %,驗證本文分析的準確性。另者,本文之驅動系統以32位元數位信號處理器TMS320F28069為控制核心,有關之控制策略大都由軟體程式執行。在電動機模式下,直流鏈輸入電壓為12 V,達到穩定運轉於轉速60 rpm之需求;而於發電機模式下,在對應於6 m/s風速之發電機轉速160 rpm,以及發電機相電流命令為1.8 A 的情況,直流側輸出電壓、電流及功率分別為20 V, 1.2 A與24 W,定電流充電之電流為0.8 A。本文之計算機模擬與實測結果驗證了系統設計與控制策略的可行性。


This thesis presents the analysis and implementation of three-phase permanent-magnet synchronous generator (PMSG) and its drive system, including horizontal wind turbine, permanent-magnet synchronous machine, bidirectional power converter for motor as well as generator modes of operation. Finite element analysis (FEA) software Maxwell/2D is used to determine PMSG's geometry for physical build-up through the comparison of the total harmonic distortions (THD) of induced electro-motive-force for different pole numbers as well as magnet pole-arc to pole-pitch ratios. Three-phase three-leg bidirectional power converter using six-step square-wave pulse-width modulation is proposed to drive the synchronous machine. Specifically, in motor mode, speed closed-loop control is given to drive permanent-magnet synchronous motor. While in the generator mode, current closed-loop and maximum power point tracking controls are introduced for PMSG to yield optimum phase current commands corresponding to various wind speeds. Futhermore, digital Hall-effect sensors are used to detect the rotational speed with low cost. As for the wind turbine blades, three-blade horizontal wind turbine, which has the advantages of high tip-speed ratio and low pull-in torque, is proposed to result in the expected rotational speed and generate the power in the low wind speed environment.
FEA shows the no-load voltage of this machine under generator mode at 180 rpm is 11.51 V, and the THD is 1.46 %. The corresponding experimental results are 11.43 V and 1.60 %, respectively. Close agreement between analysis and measurement is obtained. In addition, the 32-bit digital signal processor, TMS320F28069, is adopted as the control core, and most of the control strategy is accomplished by software program. Experimental results show that under the motor mode, with the dc-link input voltage of 12 V , the motor can reach the rotational speed of 60 rpm and operate stably. Whereas, in generator mode, under the wind speed of 6 m/s, which is equivalent to the rotational speed of 160 rpm, generator phase current command of 1.8 A will yield output dc voltage, current and power of 20 V, 1.2 A and 24 W, respectively, with the constant battery charging current of 0.8 A. In short, both the simulated and experimental results verify the feasibility of the proposed system design and control strategy.

摘 要 Abstract 誌 謝 目 錄 符號索引 圖表索引 第一章 緒論 1-1 研究動機及目的 1-2 文獻探討 1-3 本文系統架構及特色 1-4 本文大綱 第二章 三相永磁式同步電機的模式及製作 2-1 前言 2-2 三相永磁式同步電機的模式 2-3 三相永磁式同步電機的設計及分析 2-4 三相永磁式同步電機的製作及參數量測 2-4-1 三相永磁式同步電機的製作 2-4-2 三相永磁式同步電機的參數量測 2-5 結語 第三章 三相永磁式同步電機的控制及蓄電池充電控制策略 3-1 前言 3-2 電動機模式的控制策略 3-3 發電機模式的控制策略 3-4 蓄電池的充電控制策略 3-5 結語 第四章 系統實體製作 4-1 前言 4-2 硬體電路製作 4-2-1 數位信號處理器介面電路 4-2-2 數位霍爾效應偵測元件電路 4-3 軟體程式規劃 4-4 模擬及實測結果 4-5 結語 第五章 結論與建議 5-1 結論 5-2 建議 參考文獻 附錄A 風車的製作及風洞的量測 附錄B 回授電路及Matlab/Simulink模擬 附錄C 三相永磁式同步電機相關參數

[1]  Z. Zhu, D. Howe, E. Bolte and B. Ackermann, "Instantaneous magnetic field distribution in brushless permanent magnet DC motors I open-circuit field," IEEE Transactions on Magnetics, vol. 29, pp. 124-135, 1993.
[2]  Z. Zhu and D. Howe, "Instantaneous magnetic field distribution in brushless permanent magnet DC motors II armature-reaction field," IEEE Transactions on Magnetics, vol. 29, pp. 136-142, 1993.
[3]  Z. Zhu and D. Howe, "Instantaneous magnetic field distribution in brushless permanent magnet DC motors III effect of stator slotting," IEEE Transactions on Magnetics, vol. 29, pp. 143-151, 1993.
[4]  Z. Zhu and D. Howe, "Instantaneous magnetic field distribution in permanent magnet brushless DC motors IV magnetic field on load," IEEE Transactions on Magnetics, vol. 29, pp. 152-158, 1993.
[5]  Y. Tani, S. Morimoto and M. Sanada, "Influence of number of poles, and current density on characteristics of inner and outer rotor PMSMs," IEEE PEDS 2011, Singapore, 5-8 December, 2011.
[6]  Y. Li, J. Xing, T. Wang and Y. Lu, "Programmable design of magnet shape for permanent-magnet synchronous motors with sinusoidal back EMF waveforms", IEEE Transactions on Magnetics, vol. 44, pp. 2163 - 2167, 2008.
[7]  K. H. King and M. J. Youn, "Performance comparison of PWM inverter and variable DC link inverter schemes for high-speed sensorless control of BLDC motor," IEEE Electronics Letter, vol.38, pp. 1294-1295, 2002.
[8]  Y. S. Lai, K. Y. Lee, J. H. Tseng, Y. C. Chen and T. L. Hsiao, "Efficiency comparison of PWM-controlled and PAM-controlled sensorless BLDCM drives for refrigerator applications," IEEE Transactions on Industry Applications, vol. 1, pp. 268-273, 2007.
[9]  Y. Jung, J. So, G. Yu and J. Choi, "Improved perturbation and observation method of MPPT control for photovoltaic power systems," IEEE Photovotaic Specialists Conf, pp. 1788-1791, . 2005.
[10]  E. Koutroulis and K. Kalaitzakis, "Design of a maximum power tracking system for wind-energy-conversion applications," IEEE Transactions on industry electronics,vol. 53, pp. 486-494, 2006.
[11]  S. J. Park, B. B.Kang, J. P. Yoon, I. S. Cha and J. Y. Lim, "A study on the stand-alone operating or photovoltaic/wind power hybrid generation system," IEEE power electronics specialist conference, vol. 3, pp. 2095-2099, 2004.
[12]  C. T. Pan,J. Y. Chen, C. P. Chu and Y. S. Huang, "A fast maximum power point tracker for photovoltaic power systems," IEEE-IECON ' 99, vol. 1, pp.390-393, 1999.
[13]  洪碩成,"雙三相繞組同步風力發電機之功率轉換器研製",國立台灣科技大學電機研究所碩士論文,民國一百零一年。
[14]  林功偉,"以數位信號處理器為基礎之電池儲能系統研製",國立台灣科技大學電機研究所碩士論文,民國九十八年。
[15]  C. Y. Hsiao, S. N. Yeh and J. C. Hwang, "A novel cogging torque simulation method for permanent-magnet synchronous machines," Energies, pp. 2166-2179, 2011.
[16]  許家章,"應用於自動門之永磁式同步電動機驅動器研製",國立台灣科技大學電機研究所碩士論文,民國一百零四年。
[17]  黃俊憲,"蓄電池與大電容混和供電之電動機車驅動系統研製",國立台灣科技大學電機研究所碩士論文,民國一百零二年。
[18]  王星淳,"運動腳踏車發電機之功率轉換器設計",國立台灣科技大學電機研究所碩士論文,民國一百零二年。
[19]  林君達,"低噪音風能轉換系統用永磁式同步發電機之設計及控制",國立台灣科技大學電機研究所碩士論文,民國九十八年。
[20]  唐任遠等著,現代永磁電機理論與設計,機械工業出版社,1997年,北京。
[21]  S. J. Chapman, Electric machinery fundamentals, McGraw-Hill, Inc, 1991.
[22]  T. F. Chan and L. T. Yan, "Analysis and performence of a surface-mounted NdFeB permanent-magnet A. C. generator." Internatioal Conference, Advances in Power System Control, Operation and Management, vol.2, pp.11-14, 1997.
[23]  台灣湯淺電池股份有限公司(http://www.yuasa.com.tw/)。
[24]  C. Y. Hsiao, S. N. Yeh and J. C. Hwang, "Design of high performance permanent-magnet synchronous wind generators." Energies, pp.7105-7124, 2014.

QR CODE