簡易檢索 / 詳目顯示

研究生: 謝仲倫
Chung-Lun Hsieh
論文名稱: 錫銅奈米碳管電極及其鋰離子電容器
Tin/copper/CNT composite electrode and its associated lithium ion capacitors
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 江志強
Jyh-Chiang Jiang
戴 龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: 鋰離子混合式電容器奈米碳管氧化作用無電電鍍能量密度鋰化程序穩定性測試
外文關鍵詞: lithium ion hybrid capacitor, carbon nanotube, oxidation, electroless plating, energy density, lithiation
相關次數: 點閱:363下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究製備鋰離子混成電容器,合成奈米碳管/錫/銅複合材料作為負極材料,搭配活性炭做為正極材料及鋰氟磷酸有機電解液,量測其性質。研究重點在於奈米碳管/錫/銅複合材料製備及搭配,其提供電容器的高能量密度特徵。
負極活性材料製備必先將疏水奈米碳管進行表面氧化,在使用無電電鍍的方式鍍上錫銅,得到奈米碳管/錫/銅粉末;另一方面,表面氧化的程序雖然會使奈米碳管導電率下降,但若不進行表面氧化的程序,錫銅無法還原在奈米碳管上,因此適當的表面氧化程序是必須的。利用XPS分析-*貢獻,做調整後得到適當氧化後的奈米碳管保有一定的導電能力,此外顯微形貌分析顯示奈米碳管被電鍍錫銅均勻包覆,並比較奈米碳管以及預鋰化完成的奈米碳管/錫/銅材料差異。所得的奈米碳管/錫/銅電極預鋰化,第一圈電量極高但含有高成分的不可逆量,1600 mAh g-1,第二圈電量約630 mAh g-1,第三圈電量570 mAh g-1,不可逆電量用於建立電極電解質介面(SEI), SEI層的建立有助於穩定鋰離子嵌入電極及電容器的充放電。
此鋰離子混成電容器的比能量與比功率值,使用等電流放電曲線,我們製作三種不同重量比(AC:CNT/Sn/Cu = 3:1, 1.5:1, 1:1)進行測試,由Ragone plot圖可看出其中正負極比例為1.5/1進行電化學測試會得到比較優秀的表現,並探討各比例下,不同電流正負極電壓隨時間變化,而後進行交流阻抗分析,1.5:1電容器之等效電阻(1kHz)為5.98Ω。
此外不論比例為何使用0.1 A g-1進行充放電都會得到大約90 Wh kg-1左右的能量密度,由於負極進行鋰化去鋰化反應速率相較正極緩慢,是充放電的速率決定步驟,因此使用CNT/Sn/Cu作為負極的鋰離子混合式電容器適用低電流密度進行充放電。我們採用電化學性質最佳的正負極重量比1.5/1進行voltage hold測試,維持在高電壓3.8V共100小時,一百小時後的電容保留率大約為85%。庫倫效率維持在95%以上。


In this study, lithium hybrid ion capacitors, consisting of a negative electrode of CNT/Sn/Cu composite and activated carbon positive electrode soaked in LiPF6/EC:DMC electrolyte, were prepared, starting from the CNT/Sn/Cu composite synthesis and ended with the capacitor performance measurements. The research efforts are focused on fabrication of the CNT/Sn/Cu anode and its mass balancing with AC. The CNT/Sn/Cu anode renders the capacitor feature of high energy.
On synthesis of CNT/Sn/Cu anode, the carbon nanotube surface has to be oxidized before electroless plating of tin and copper is executed, since the carbon surface is hydrophobic. On the other hand, the excessively oxidized surface conducts poorly. The oxidation conditions were adjusted to obtain the properly oxidized surface using the -* contributing of XPS spectra such that we maintained the CNT conductive capability at certain level. Microstructure analysis indicates the metallic tin and copper wrap the nanotube uniformly, and compares the morphological difference between the coated nanotubes and the lithiated nanotubes. The so-prepared electrode exhibits huge capacity, 1600 mAh g-1, that contains a large fraction of irreversibility in the first discharge cycle of prelithiation. The second cycle, 640 mAh g-1, and the third cycle 570 mAh g-1, are highly reversible. High reversibility in the first cycle is due to lithium consumed in building the solid-electrolyte interface (SEI). The SEI formation stabilizes the lithium intercalation and charge-discharge cycling.
Values of specific energy and power of the lithium hybrid ion capacitors are calculated, based on the galvanostatic discharge curves, with a AC:CNT/Sn/Cu mass ratio of 3:1, 1.5:1, 1:1. Ragone plots of these three cells show 1.5:1 is the best mass ratio in energy-power performance. We analyze the electrode potential variation with time for the three cells under different specific currents. The resistances of three cells are also measured with impedance spectroscopy. The equivalent resistance of 1.5:1 cell is 5.98Ω.
Regardless the mass ratios, these capacitor demonstrates storage capacity of 90.0 Wh kg-1 and 0.16 kW kg-1 at 0.1 A g-1. Since the anode mass loadings of three cells are the same, we infer that the cell performance is governed by the CNT/Sn/Cu electrode, which is reasonable since lithiation and delithiation is intrinsically slow compared with adsorption on double layer, hence rate-determining. We also measure the stability of 1.5:1 cell using the voltage hold method, which displays 85% retention in capacitance and over 95% coulombic efficiency in a period of 100 h.

摘要 I ABSTRACT III 目錄 V 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與理論基礎 3 2.1 電化學電容器(Electrochemical capacitors, EC) 3 2.1.1 電雙層電容器(Electrochemical Double-layer Capacitors, EDLC) 5 2.1.2 擬電容器 (Pseudocapacitor) 7 2.1.3 鋰離子混合式電容器 (Lithium-ion hybrid capacitors, LIHC) 8 第三章 實驗方法與步驟 13 3.1 實驗藥品耗材與儀器設備 13 3.1.1正、負極材料製備 13 3.1.2電性量測 15 3.1.3 電化學測試儀器及設備 17 3.1.4 材料鑑定及分析之儀器 17 3.2實驗流程圖 18 3.2.1 正極漿料製備 18 3.2.3 負極漿料製備 19 3.2.4 鋰離子混和式電容器之電極製備 20 3.3 實驗方法 21 3.3.1鋰離子混合式電容器正極漿料製備 21 3.3.2 鋰離子混合式電容器負極材料合成 21 3.3.3 鋰離子混合式電容器負極漿料製備 22 3.3.4 電流收集器清洗及準備工作 23 3.3.5 Electrochemical test cell組裝 24 3.4 電極材料鑑定與分析 24 3.4.1 場發射掃瞄式電子顯微鏡 24 3.4.2 X射線光電子能譜化學分析儀 25 3.5 電化學特性分析 25 3.5.1 循環伏安法 25 3.5.2 恆電流充、放電量測 26 3.5.3穩定性測試 26 第四章 結果與討論 28 4.1 電極材料性質測試 28 4.1.1 X射線光電子能譜儀 28 4.1.2負極材料CNT/Sn/Cu之形貌 31 4.1.3負極材料成分分析 34 4.2單電極電化學行為及預測 37 4.2.1 預鋰化負極 37 4.2.2負極電化學分析 39 4.2.3正極循環伏安法分析 41 4.3 鋰離子混合式電容器性質測試 42 4.3.1正負極重量比電容器理論電容量計算 42 4.3.2 放電特性分析 47 4.3.3恆電流充、放電及比電容分析 48 4.3.4 個別電位及正負極電容值分析 50 4.3.5交流阻抗分析 59 4.3.6 穩定性測試 60 第五章 結論 61 第六章 參考文獻 62

[1] A. K. Shukla, A. Banerjee, M. K. Ravikumar, A. Jalajakshi, “Electrochemical capacitors: Technical challenges and prognosis for future markets”, Electrochimica Acta, vol. 84, pp. 165-173 (2012)
[2] R. Kötz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, vol. 45, pp. 2483-2498 (2000)
[3] M. Winter, R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?”, Chemical Reviews, vol. 104, pp. 4245-4269 (2004)
[4] A. Burke, “Ultracapacitors: why, how, and where is the technology”, Journal of Power Sources, vol. 91, pp. 37-50 (2000)
[5] P. Sharma, T. S. Bhatti, “A review on electrochemical double-layer capacitors”, Energy Conversion and Management, vol. 51, pp. 2901-2912 (2010)
[6] E. Frackowiak, F. Béguin, “Carbon materials for the electrochemical storae of energy in capacitors”, Carbon, vol. 39, pp. 937-950 (2001)
[7] G. Wang, L. Zhang, J. Zhang, “A review of electrode materials for electrochemical supercapacitors”, Chemical Society Reviews, vol. 41, pp. 797-828 (2012)
[8] J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthium oxide as an electrode material for electrochemical capacitors”, Journal of The Electrochemical Society, vol. 142, pp. 2699-2703 (1995)
[9] K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, “Symmetric redox supercapacitor with conducting polyaniline electrodes”, Journal of Power Sources, vol. 103, pp. 305-309 (2002)
[10] A. Clemente, S. Panero, E. Spila, B. Scrosati, “Solid-state, polymer-based, redox capacitors”, Solid State Ionics, vol. 85,pp. 273-277 (1996)
[11] W. Cao, J. Zheng, D. Adams, T. Doung, J.P. Zheng, J. Electrochem. Soc. 161 (2014) A2087-A2092.
[12] D. Cericola, R. Kotz, Electrochim. Acta 71 (2012) 1-17.
[13] N. Omar, M. Daowd, O. Hegazy, M. Al Sakka, Th. Coosemans, P. Van den Bossche, J. Van Mierlo, Electrochim. Acta 86 (2012) 305-315.
[14] P.H. Smith, T.N. Tran, T.L. Jiang, J. Chung, J. Power Sources 243 (2013) 982-992.
[15] C. Decaux, G. Lota, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, Electrochim. Acta 86 (2012) 282-286.
[16] M.S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu, Y. Tong, J. Mater. Chem. A 3 (2015) 1364-1387.
[17] V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi, Chem. Rev. 114 (2014) 11619-11635.
[18] K. Naoi, Fuel Cells 10 (2010) 825-833.
[19] J. Graetz, C.C. Ahn, R. Yazami, B. Fultz, Electrochem. Solid-State Lett. 6 (2003) A194-A197.
[20] M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, Adv. Mater. 25 (2013) 4966-4985.
[21] X. Li , X. Meng , J. Liu , D. Geng , Y. Zhang, M.N. Banis , Y. Li , J. Yang , R. Li , X. Sun, M. Cai , M.W. Verbrugge, Adv. Funct. Mater. 22 (2012) 1647-1654.
[22] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, pp. 613-620 (1999)
[23] A. Burke, “R&D considerations for the performance and application of electrochemical capacitors”, Electrochimica Acta, vol. 53, pp. 1083-1091 (2007)
[24] P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors”, Nature materials, vol. 7, pp. 845-854 (2008)
[25] D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, Journal of Power Sources, vol. 74, pp. 99-107 (1998)
[26] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354, pp. 56-58 (1991)
[27] Q. L. Chen, K. H. Xue, W. Shen, F. F. Tao, S. Y. Yin, W. Xu, “Fabrication and Electrochemical Properties of Carbon Nanotube Array Electrode for Supercapacitors”, Electrochimica Acta ,vol. 24, pp. 4157-4161 (2004)
[28] C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes”, Applied Physics Letters , vol. 70, pp. 1480-1482 (1997)
[29] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, “Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes”, Advanced Funtional Materials, vol. 11, pp. 387-392 (2001)
[30] A. R. Kamali, D. J. Fray, “Tin-based materials as advanced anode materials for lithium ion batteries: A review”, Reviews on Advanced materials science, vol.27, pp.14-24 (2011)
[31] M. N. Obrovac, L. Christensen, “Structural changes in silicon anodes during lithium insertion/extraction”, Electrochemical and Solid-State Letters, vol.7, pp. A93-A96 (2004)
[32] M. J. Lindsay, G. X. Wang, H. K. Liu, “Al-based anode materials for Li-ion batteries”, Journal of Power Sources, vol. 119-121, pp. 84-87 (2003)
[33] C. K. Chan, X. F. Zhang, Y. Cui, “High capacity Li ion battery anodes using Ge nanowires”, Nano Letters, vol. 8, pp. 307-309 (2008)
[34] R. A. Huggins, “Lithium alloy negative electrodes”, Journal of Power Sources, vol. 81-82, pp. 13-19 (1999)
[35] L. Y. Beaulieu, S. D. Beattie, T. D. Hatchard, J. R. Dahn, “The electrochemical reaction of lithium with tin studied by In Situ AFM”, Journal of The Electrochemical Society, vol. 150, pp. A419-A424 (2003)
[36] M. Dahbi, F. Ghamouss, T. V. François, D. Lemordant, M. Anouti, “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage”, Journal of Power Sources, vol. 196, pp. 9743-9750 (2011)
[37] Z. Chen, W. Q. Lu, J. Liu, K. Amine, “LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries”, Electrochimica Acta, vol. 51, pp. 3322-3326 (2006)

[38] Q. M. Liu, D. Zhou, Y. Yuya, I. Ryoichi, O. Masazumi, “Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method”, Transactions of Nonferrous Metals Society of China, vol. 22, pp. 117-123 (2012)
[39] C. Xu, G. Wu, Z. Liu, D. Wu, T. T. Meek, Q. Han, “Preparation of copper nanoparticles on carbon nanotubes by electroless plating method”, Materials Research Bulletin, vol. 39, pp. 1499-1505 (2004)
[40] B. Zhao, B. L. Yadian, Z. J. Li, P. Liu, Y. F. Zhang, “Improvement on wettability between carbon nanotubes and Sn”, Surface Engineering, vol. 25, pp. 31-35 (2009)
[41] S. Liu, Q. Li, Y. Chen, F. Zhang, “Carbon-coated copper–tin alloy anode material for lithium ion batteries”, Journal of Alloys and Compounds, vol. 478, pp. 694-698 (2009)
[42] S. T. Myung, Y. Hitoshi, Y. K. Sun, “Electrochemical behavior and passivation of current collectors in lithium-ion batteries”, Journal of Materials Chemistry, vol. 21, pp. 9891-9911 (2011)
[43] G. Moraitis, Z. Špitalský, F. Ravani, A. Siokou, C. Galiotis, “Electrochemical oxidation of multi-wall carbon nanotubes”, Carbon, vol. 49, pp. 2702-2708 (2011)
[44] K. A. Wepasnick, B. A. Smith, J. L. Bitter, D. H. Fairbrother, “Chemical and structural characterization of carbon nanotube surfaces”, Anal Bioanal Chem, vol. 396, pp. 1003-1014 (2010)
[45] W. Martin, O. B. JuÈ rgen, “Electrochemical lithiation of tin and tin-based intermetallics and composites”, Electrochimica Acta, vol. 45 pp. 31-50 (1999)
[46] I. Doberdò, N. Löffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G. T. Kim, S. Passerini, “Enabling aqueous binders for lithium battery cathodes e Carbon coating of aluminum current collector”, Journal of Power Sources, Vol. 248, pp. 1000-1006 (2014)

無法下載圖示
全文公開日期 2025/08/03 (校外網路)
全文公開日期 2025/08/03 (國家圖書館:臺灣博碩士論文系統)
QR CODE