簡易檢索 / 詳目顯示

研究生: 洪煜程
Yu-Cheng Hung
論文名稱: 基於鼓形齒直傘齒輪切齒機之齒面數學模式
MATHEMATICAL MODEL OF STRAIGHT BEVEL GEAR CUT BY THE STRAIGHT BEVEL CONIFLEX GENERATOR
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 吳育仁
Yu-Ren Wu
林柏廷
Po-Ting Lin
陳思宏
Szu-Hung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 110
中文關鍵詞: 鼓形齒直傘齒輪雙連鎖碟型刀具切製法相對修形齒面接觸分析齒面誤差修正
外文關鍵詞: Coniflex cutting method, straight bevel gear, ease off, tooth contact analysis, flank correction method
相關次數: 點閱:336下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鼓形齒(Coniflex)直傘齒輪之特色是在齒長方向做修形為中凸狀齒形,此種齒形具有低組裝敏感度的特點,在遇上組裝誤差或製造誤差所造成的組裝位置偏差時,仍能保持良好的接觸情況。加工鼓形齒直傘齒輪時使用一對刀刃交錯的碟型刀具切削齒面,且在加工過程中不做齒長方向的移動,而是旋轉刀具使外型輪廓產生凹面,以此對齒輪加工出具齒長方向中凸狀的齒形,且可藉由控制刀具角度來調整齒輪的接觸長度。美國格里森公司為製造此種齒形提供了No.102型、No.104型、No.114型,及No.134型直傘齒輪切齒機,使用上下交錯刀具加工齒輪,以此命名為雙連鎖碟型刀具切製法,並提出此種機台的齒胚設計、刀具設計及機械設定的計算方式,但其齒面數學模式因商業理由未對外公開。
本論文主要目的是推導格里森No.104機台所切製出的鼓形齒直傘齒輪齒面數學模式,首先依格里森公司所提出的計算公式表計算鼓形齒直傘齒輪齒胚參數、刀具數學模式及機械設定數值,使用座標轉換法由刀具軌跡推導出齒面包絡線,並配合嚙合方程式即可解出齒輪齒面,再由兩接觸性能分析方法,分別是齒面相對修形及齒面接觸分析,來驗證齒面數學模式的正確性。最後,為了修正製造誤差,本論文以最佳化方法建立齒面誤差修正方法,以齒面拓樸點誤差與齒厚誤差作為目標函數,調整各軸機械設定求解目標函數最小值,由克林根貝格P40齒輪量測機台量測齒輪產生齒面誤差分析報告,根據報告結果進行齒面誤差修正以計算出各軸機械設定須如何調整以修正齒面。


The Coniflex® straight bevel gear (SBG) characteristic is the lengthwise crowning tooth flanks, and thus achieves the advantages of low assemble sensibility and high precision. When the deformation, assembly deviation or manufacturing deviation cause the displacement of assembling position, Coniflex® SBG could preserve the contact situation. This method uses two interlocking disk cutters to generate tooth flanks. The profile of the cutter can generate lengthwise crowning tooth flank. By change the cutter pressure angle, the contact length of gear can be adjusting. Gleason provides No. 102, No. 104, No. 114 and No. 134 straight bevel cutting machine for this gear. Gleason also provides the blank design, cutter design and machine setting calculating instructions. However, the detail of the Coniflex® cutting method is not provided because of commercial considerations.
The main goal of this paper is to establish a mathematical model of the tooth surfaces of Coniflex® gears produced by machine No. 104. First, using calculating instructions calculate Coniflex® straight bevel gear blank parameters and tool, mathematical model. Machine settings of the machine are determined from the formulas provided by the machine calculating instructions. The locus of the cutter can be derived using the coordinate transformation method, and their envelope constructs the tooth surface which is solved using the equation of meshing. Two evaluation methods, ease off and tooth contact analysis, are adopted to confirm the correctness of the proposed models. Lastly, to correct the manufacturing deviation. We establish the flank correction method by the optimization method. KlingelnbergP40 export flank deviation report which used for calculating correction of machine setting.

中文摘要 I Abstract II 誌 謝 III 目 錄 IV 符號索引 VI 圖索引 VIII 表索引 X 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 2 1.4 論文架構 3 第 2 章 鼓形齒直傘齒輪齒面數學模式 4 2.1 前言 4 2.2 直傘齒輪齒胚設計 4 2.3 刀具數學模式 6 2.4 機械設定定義 8 2.5 格里森機械設定到泛用機械設定的轉換 12 2.6 直傘齒輪齒面數學模式 13 2.7 齒面壓力角和螺旋角 15 2.8 齒面拓樸量測 16 2.9 數值範例 19 2.10 小結 23 第 3 章 接觸性能分析 24 3.1 前言 24 3.2 齒面相對修形 24 3.3 齒面接觸分析 26 3.4 數值範例 27 3.5 小結 31 第 4 章 閉迴路鼓形齒直傘齒輪製造 32 4.1. 前言 32 4.2. 齒面誤差分析 32 4.3. 敏感度分析法修正齒面誤差 34 4.4. 最佳化方法齒面誤差修正 38 4.5. 小結 40 第 5 章 直傘齒輪製造及齒面誤差修正實驗結果 41 5.1 前言 41 5.2 齒面切製實驗結果 41 5.3 齒面誤差修正結果 44 5.4 小結 53 第 6 章 結論與建議 54 6.1 結果與討論 54 6.2 未來展望 55 參考文獻 56 附錄A. MESINFO.CDS 58 附錄B. SOLL.CDS(小齒輪) 59 附錄C. SOLL.CDS(大齒輪) 65 附錄D. 共軛大齒輪齒面拓樸點資料 71 附錄E. ACTU.CDS(小齒輪) 86 附錄F. ACTU.CDS(大齒輪) 92

[1] The Gleason Works, “Calculating Instructions Generated Straight Bevel Coniflex® Gears (No.2A, 102, 104, 114 and 134 Straight Bevel Coniflex® Generators)”, Rochester, NY, USA, 1961.
[2] The Gleason Works, “NC/50 Ratio of Roll and Compound Change Gear Tables”, Rochester, NY, USA, 1965.
[3] Carlsen, L. O., 1951, Method and Machine for Cutting Gears, U.S. Pat. 2567273.
[4] Wilhaber, E., 1952, Cutting for Gears, Face Couplings, and the like, U.S. Pat. 2586451.
[5] Spear, G. J., 1960, Rotary Cutter for Gears and the Like, U.S. Pat. 2947062.
[6] 沈頌文,齒輪的設計與製造,徐氏基金會出版,台北 (1998)。
[7] Townsend, D. P., Dudley's Gear Handbook, 2nd Edition, McGraw-Hill, NY, USA, 2011.
[8] Özel, C., İnan, A., and Özler, L., “An Investigation on Manufacturing of the Straight Bevel Gear Using End Mill by CNC Milling Machine,” Journal of Manufacturing Science and Engineering, Vol. 127, No. 3, pp. 503-511, 2005.
[9] 石伊蓓,「直傘齒輪製造方法介紹」,機械月刊,第三十六卷,第六期,第84-101頁 (2010)。
[10] Chang, C. K., Tsay, C. B., “Mathematical Model of Straight Bevel Gears with Otoid Form,” J. Chin. Soc. Mech. Eng., 21(3), pp. 239–245, 2000.
[11] Chang, C. K., Tsay, C. B., “Characteristics of Profile-Shifted Straight Bevel Gears with Octoid Form,” Proceedings of the ASME Design Engineering Technical Conference, Chicago, IL, USA, Vol. 4B, pp. 895-901, 2003.
[12] Ichino, K., Tamura, H., and Kawasaki, K., “Method for Cutting Straight Bevel Gears Using Quasi-Complementary Crown Gears,” ASME Des. Eng. Div., 88, pp. 283–288, 1996.
[13] Al-Daccak, M. J., Angeles, J., and González-Palacios, M. A., “The Modeling of Bevel Gears Using the Exact Spherical Involute,”ASME J. Mech. Des., 116(2), pp. 364–368, 1994.
[14] 謝欣諺,傘齒輪切齒機之直傘齒輪雙連鎖碟型刀具切製法研究,碩士論文,台灣科技大學,台北 (2013)。
[15] Alfonso, F. A., Eloy, T. M., and Ignacio, G. P., “Computerized Generation and Gear mesh Simulation of Straight Bevel Gears Manufactured by Dual Interlocking Circular cutters,” Mech. Mach. Theory, Vol. 122, pp. 160-176, 2018.
[16] Shih, Y. P., and Fong, Z. H., “Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography,” Transactions of ASME, Journal of Mechanical Design, Vol. 129, No. 12, pp. 1294-1302, 2007
[17] 李羿慧,面滾式直傘齒輪齒面數學模式之研究,碩士論文,台灣科技大學,台北 (2012)。
[18] Litvin, F. L., and Fuentes, A., Gear Geometry and Applied Theory, 2nd Edition, Cambridge University Press, Cambridge, UK, 2004.
[19] Shih, Y. P., “A Novel Ease-Off Flank Modification Methodology for Spiral Bevel and Hypoid Gears,” Mech. Mach. Theory, 45(8), pp. 1108-1124, 2010.
[20] Klingelnberg, P40 Operating Instructions, Bevel Gear Software, Version 03-000en.
[21] Shih, Y. P., and Fong, Z. H., “Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Generator,” ASME International Mechanical Engineering Congress and Exposition, Vol. 3, pp. 431-440, 2007.
[22] Shih, Y. P., Sun Z. H., and Lai, K. L., “A Flank Correction Face-Milling Method for Bevel Gears Using a Five-Axis CNC Machine,” Int. J. Adv. Manuf. Tech., Vol. 91, No. 9-12, pp. 3636-3652, 2017.
[23] Sullivan, K. A., Jacobson, S. H., “A convergence analysis of generalized hill climbing algorithms,” IEEE., vol. 46, pp. 1288-1293, 2001
[24] Jacobson, S. H., Sullivan, K. A., and Johnson, A. W., “Discrete manufacturing process design optimization using computer simulation and generalized hill climbing algorithms,” Eng. Optim., vol. 31, pp. 247–260, 1998.

QR CODE