簡易檢索 / 詳目顯示

研究生: 邱思皓
Szu-Hao Chiu
論文名稱: 植牙手機齒輪組之多位置應力分析
Multi-Position Stress Analysis for Gear Pairs of Implant Dental Handpiece
指導教授: 石伊蓓
Yi-pei Shih
口試委員: 李志中
Jyh-Jone Lee
蔡高岳
Kao-Yueh Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 植牙手機圓柱齒輪直傘齒輪齒面相對修形成形法ANSYS APDL
外文關鍵詞: Implant dental handpiece, planetary gear train, straight bevel gear, ease-off, formate cutting method, ANSYS APDL
相關次數: 點閱:228下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植牙手機為執行植牙手術切除病變的牙齦組織的牙科手術器械之一,牙科手機有低轉速和高轉速兩種類型,前者為高扭矩是導致齒輪破壞的原因。為了達到20:1的減速比,植牙手機需要三個齒輪對,包括一組行星齒輪系和兩個直傘齒輪對。由於空間大小的限制,直傘齒輪的齒面為非標準齒型,無法使用現有齒輪強度標準(如AGMA 908-B89 and ASNI/AGMA ISO 2003-B97)進行齒輪強度的計算。
    本研究目的為建立直傘齒輪強度分析之數學模型,首先將商用產品以2.5D及3D進行量測,並以此為基礎進行兩個齒輪對的齒輪幾何重建。由於直傘齒輪的製造是以成形法製作,故根據直傘齒輪齒面建立齒面拓樸點數學模式。為了趨近於共軛齒面已達更好的接觸性能,故使用齒面相對修形決定小齒輪的齒面。在這裡採用ANSYS參數化設計語言(ANSYS Parameter Design Language, APDL)進行植牙手機齒輪對的靜態應力分析,根據數學模型且透過Mathematica軟件來自動產生APDL腳本檔,包括前處理、求解以及後處理,因此多位置應力分析可以快速得到齒輪對在不同的旋轉角度接觸位置的腳本檔,最後應力分析結果可以改善植牙手機齒輪強度的基礎。


    The implant dental handpiece is one of dental surgical instruments for performing root implant surgery to remove diseased gum tissue. There are two types of the implant dental handpieces: low speed and high speed. The former is induced high torque and that causes gear failure. In order to reduce the speed by the ratio 1/20, the implant dental handpiece needs three gear pairs, including the planetary gear train and two straight bevel gear pairs. Due to the limitation of space size, the design of straight bevel gear tooth surface is not standard. The exist gear strength standard (for example AGMA 908-B89 and ASNI/AGMA ISO 2003-B97) cannot be applied for calculation.
    This research aims to establish a mathematical model of strength analysis of straight bevel gear pair. First, the 2.5D and 3D measurements are done from the commercial product and are the basis to rebuild the gear geometries of both gear pairs. Considering gear manufacture, a formate cutting method is adopted to produce the tooth surface of straight bevel gear. Its mathematical model is then established for further calculation of flank topographic points. In order to approach the conjugated tooth surfaces for better contact performance, the ease-off is adopted for determining the pinion tooth surfaces while the gear is a target. ANSYS Parametric Design Language (APDL) is here adopted for static stress analysis of implants dental handpiece gear pairs. According to the mathematical model, the APDL script file is automatically generated through software Wolfram Mathematica, in which the preprocessor, solution and postprocessor are included. Therefore, multi-position stress analyses can be quickly obtained through script files with the positions of contact gear pair in different gear rotation angles. Finally, the stress analysis result can be as a foundation to improve the gear strength of the implant dental handpiece.

    目 錄 指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 誌 謝 V 目 錄 VI 符號索引 IX 圖索引 X 表索引 XIV 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 論文架構 4 第 2 章 植牙彎手機 5 2.1 前言 5 2.2 植牙彎手機結構 5 2.3 逆向工程 6 2.4 3D掃描法 6 2.5 2.5D輪廓投影法 6 2.2.1 行星齒輪組 7 2.2.2 163度傘齒輪對 9 2.2.3 90度傘齒輪對 10 2.6 小結 12 第 3 章 齒輪組數學模式 13 3.1 前言 13 3.2 行星齒輪組數學模式 13 3.2.1 行星輪、太陽輪及環齒輪數學模式 13 3.3 直傘齒輪組齒輪數學模式推導 16 3.3.1 大小齒輪組裝座標系統 16 3.3.2 齒面相對修形(Ease-off) 18 3.3.3 大齒輪齒面數學模式 19 3.4.1 小齒輪齒面數學模式 22 3.4.2 齒面接觸分析 22 3.4.3 數值範例 23 3.4 小結 35 第 4 章 ANSYS齒輪靜態應力分析 36 4.1 前言 36 4.2 ANSYS應力分析 36 4.3 行星齒輪系應力分析 37 4.4.1 行星齒輪系ANSYS模型 38 4.4.2 應力分析結果 41 4.4 163度直傘齒輪對齒輪應力分析 41 4.4.1 163度直傘齒輪對ANSYS模型 42 4.4.2 應力分析結果 44 4.5 90度直傘齒輪對齒輪應力分析 46 4.5.1 90度直傘齒輪對ANSYS模型 46 4.5.2 應力分析結果 48 4.6 小結 49 第 5 章 ANSYS齒輪多位置應力分析 51 5.1 前言 51 5.2 ANSYS參數化設計語言(APDL) 51 5.3 齒輪多位置應力分析方法 54 5.4 行星齒輪組多位置應力分析 56 5.5 163度直傘齒輪對多位置應力分析 58 5.6 90度直傘齒輪對多位置應力分析 60 5.7 小結 63 第 6 章 結論與建議 64 6.1 結果與討論 64 6.2 建議與未來展望 65 參考文獻 67 附錄 A ANSYS APDL常用指令 69 附錄 B 行星齒輪系應力分析APDL命令檔 73 附錄 C 163度直傘齒輪對應力分析APDL命令檔 81 附錄 D 90度直傘齒輪對應力分析APDL命令檔 89

    [1] AGMA 908-B89, 1984, Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical and Herringbone Gear Teeth.
    [2] ASNI/AGMA ISO 2003-B97, 2006, Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel, and Spiral Bevel Gear Teeth, Alexandria VA.
    [3] Litvin, F. L., and Fuentes A., 2004 ,”Gear Geometry and Applied Theory, 2nd Edition”, Cambridge University Press, Cambridge, UK.
    [4] 蔣岳峰,五軸CNC成形砂輪磨齒機數學模式之研究,國立台灣科技大學,2011。
    [5] Shih, Y. P., and Fong, Z. H., 2007, “Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography,” Transactions of ASME, Journal of Mechanical Design, 129(12), pp. 1294-1302.
    [6] Tasi, Y. C., and Chin, P. C., 1987, “Surface Geometry of Straight and Spiral Bevel Gear”, Transactions of ASME, Journal of Mechanisms, Transmissions and Automation in Design, Vol. 109, No 4, pp. 443-449.
    [7] Shunmugam, M. S., Rao, B. S., and Jayaprakash, V., 1998, “Establishing Gear Tooth Surface Geometry and Normal Deviation, Part II - Bevel Gears,” Mechanism and Machine Theory, Vol. 33, No. 5, pp. 525-534.
    [8] Al-Daccak, M. L., Angeles, J., and González-Palacios, M. A., 1994, “The Modeling of Bevel Gears Using the Exact Spherical Involute,” Transactions of ASME, Journal of Mechanical Design, Vol. 116, No. 2, pp.364-368.
    [9] Litvin, F. L., Chaing, W. S., Kuan, C., Lundy, M., and Tsung, W. J., 1991, “Generation and Geometry of Hypoid Gear-Member with Face-Hobbed Teeth of Uniform Depth,” International Journal of Machine Tools and Manufacture, Vol. 31, No. 2, pp. 167-181.
    [10] Shih, Y. P., Fong, Z. H., and Lin, C. Y., 2007, “Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator,” Transactions of ASME, Journal of Mechanical Design, Vol. 129, No. 1, pp. 38-47.
    [11] Litvin. F. L., Fuentes, A., Fan, Q., Handschuh, R. F., 2002, “Computerized design, simulation of meshing, and contact and stress analysis of face-milled formate generated spiral bevel gears”, Mechanism and Machine Theory, 37(5), pp. 441-459.
    [12] Litvin, F. L., Fuentes, A., Pontiggia, M., and Zamzi, C., 2002, “Design, generation, and stress analysis of two versions of geometry of face-gear drives”, Mechanism and Machine Theory, 37(10), pp. 1179-1211.
    [13] Lou, J. J., Cao, X. M., and Jiao, J. S., 2013, “Design, generation, and stress analysis of two versions of geometry of face-gear drives”, Applied Mechanics and Materials, 401-403, pp. 345-349.
    [14] Lee, H. H., 2014, “Finite Element Simulations with ANSYS Workbench15”, Chuan Hwa Book Co., Ltd.
    [15] 李輝煌,ANSYS工程分析基礎與觀念,高立圖書有限公司,1999。
    [16] Sankpal, A.M., and Mirza, M. M., 2014, “Contact Stress Analysis of Spur Gear by Photoelastic Technique and Finite Element Analysis”, International Journal on Theoretical and Applied Research in Mechanical Engineering, 3(2).
    [17] Koisha, J. R., and Doshi, H. P., 2012, “Influence of Friction on Contact Stress for Small Power Transmission Planetary Gear Box”, International Journal of Engineering Research and Development, 1(5), pp. 38-43.
    [18] Chen, Y. C., and Tsay, C. B., 2002, ”Stress analysis of a helical gear set with localized bearing contact”, Finite Element in Analysis and Design, 38, pp.707-723.
    [19] 張金良,方宗德,曹雪梅,李盛鵬,弧齒錐齒輪齒面接觸應力分析,機械科學與技術,第26卷,第10期,2007。
    [20] 伍志明,直傘齒輪有限元素應力分析之研究,國立台灣科技大學,2012。
    [21] Heo, S. C., Kim, J., Kang, B. S., 2006, “Investigation on determination of loading path to enhance formability in tube hydroforming process using APDL”, Journal of Materials Processing Technology, 177, pp.653-657
    [22] 黛曙光,謝桂蘭,黃雲清,ANSYS 參數化編程與命令手冊,機械工業出版社,2009。

    QR CODE