簡易檢索 / 詳目顯示

研究生: 陳健輝
Julius - Candrawan
論文名稱: Selective Electrochemical Detection of Metal Ions by Porphyrin Derivative/Graphene Derivative Thin Films on ITO Electrode
Selective Electrochemical Detection of Metal Ions by Porphyrin Derivative/Graphene Derivative Thin Films on ITO Electrode
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
何郡軒
Jinn-Hsuan. Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 89
中文關鍵詞: 單層組裝π-π堆疊紫質衍生物石墨烯衍生物電子傳送選擇上的檢測金屬離子電化學行為
外文關鍵詞: π-π stacking, porphyrin derivative, graphene derivative, electron transfer, selective detection
相關次數: 點閱:165下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米科技已廣泛的運用於許多領域,例如:感測器、太陽能電池、生醫系統以及其它領域。本實驗為研究紫質衍生物與石墨烯衍生物的複合材料並將其應用於感測器上。在此,紫質衍生物使用四(4-羧苯基)紫質(TCPP),而石墨烯衍生物使用氧化石墨烯(GO)以及還原氧化石墨烯(RGO)。首先經由非共價的方式(芳香族π-π堆疊)來合成GO複合物(GO-TCPP)以及藉由化學還原法來合成還原氧化石墨烯。每一個溶液的光電性質以及GO和RGO的型態都顯示一致的結果,此結果證實石墨烯的單層具自我組裝能力以及在電子受體和予體間具備電子傳遞現象。
    本實驗由單層自我組裝法來製備ITO電極上的薄膜。在此,藉由APTES做為聯結ITO電極和紫質/石墨烯衍生物。不同的薄膜均可用APTES鍵結架橋,並浸泡於不同條件的溶液24小時。另外,經由循環伏安法所測得的結果可得知GO-TCPP/APTES/ITO電極比TCPP/RGO/APTES/ITO電極有更高的電子傳送速率。以分光光譜法及電化學測定法來檢測水溶液之金屬離子(Cu2+,Zn2+,和Fe2+)。由分光光譜以及電化學測定的結果可知TCPP傾向於與Cu2+離子結合。這是因為TCPP上的吡咯環及羧基可與Cu2+離子結合。另一方面,GO複合物(GO-TCPP)對於Cu2+離子呈現最佳的電化學行為,這是由於GO具有導體的特性,因此可以促進電子傳遞。其中,GO對Cu2+離子的高敏感性與其特殊電子傳遞程序有關。


    Nanotechnology has been extensively utilized in many field of applications, such as sensors. This research reported about preparation of porphyrin derivative/graphene derivative composite and their sensor application. Porphyrin derivative used in this research was tetrakis(4-carboxyphenyl)porphyrin (TCPP), whereas graphene derivatives used were graphene oxide (GO) and reduced graphene oxide (RGO). It began with a synthesis of composite (GO-TCPP) by non-covalent strategy through aromatic  stacking and a synthesis of reduced graphene oxide through chemical reduction method. Optical, electrical, and morphological properties of each solution showed acceptable results, indicating self-assembly monolayer and electron transfer process in the presence of electron acceptor and donor.
    The preparation of thin films on ITO electrode was carried out via self-assembled monolayer method. APTES was used as a functional group to perform chemical bonding between ITO electrode and porphyrin derivative/graphene derivative. Preparation of each thin film by using APTES as a self-assembled monolayer functional group used 24 hours as an immersion time. Cyclic voltammetry results indicated that GO-TCPP/APTES/ITO electrode has higher conductivity than TCPP/RGO/APTES/ITO electrode. The selective detection of metal ions (Cu2+, Zn2+, and Fe2+) were investigated through spectrophotometry and electrochemical determination method. According to the result of spectrophotometry and electrochemical determination, TCPP have selective detection to Cu2+ ions because TCPP have pyrrole ring and carboxyl groups which play an important role to bind Cu2+ ions. GO composite (GO-TCPP) give the greatest electrochemical behavior to Cu2+ ion since the characteristic of GO as a conductive material could accelerate electron transfer process which related to enhancement of sensitivity performance to Cu2+ ions.

    Abstract i 摘 要 ii Acknowledgements iii Table of Contents iv List of Figures vi List of Tables x Chapter 1 General Introduction 1 1.1. Nanotechnology 1 1.2. Transparent conductive oxides (TCOs) electrode 2 1.3. Self-assembled monolayer (SAM) of thin film coated ITO electrode. 3 1.4. Porphyrins 4 1.5. Graphene oxide (GO) and reduced GO (RGO) 5 1.6. Research purposes 6 Chapter 2 Chemicals and Instruments 7 2.1. Chemicals 7 2.2. Apparatus 7 Chapter 3 Properties of Thin films on ITO electrode 9 3.1. Introduction 9 3.2. Experimental section 11 3.2.1. Preparation of solutions 11 3.2.2. Preparation of GO composite (GO-TCPP) via  stacking 11 3.2.3. Preparation of reduced GO (RGO) via hydrazine reduction 11 3.2.4. Preparation of thin film on indium tin oxide (ITO) electrode 12 3.3. Results and discussion 16 3.3.1. Binding of TCPP on Graphene Derivative 16 3.3.2. Electrochemical properties of thin film on ITO electrode 25 3.3.3. Optical properties of thin film on ITO electrode 28 3.3.4. Surface properties of thin film on ITO electrode 32 3.4. Conclusion 48 Chapter 4 Detection of Metal Ions (Cu2+, Fe2+, Zn2+) 50 4.1. Introduction 50 4.2. Experimental Section 51 4.3. Results and discussion 53 4.3.1. Spectrophotometric determination of metal ions 53 4.3.2. Electrochemical determination of metal ions 57 4.3.3. Chemical interaction of TCPP to Cu2+ 61 4.3.4. Effect of graphene derivatives for enhancement of sensitivity to Cu2+ 65 4.4. Conclusion 71 General Conclusion 72 Reference 73

    [1] Lee, Y. S., "Nanotechnology Systems," in Self-Assembly and Nanotechnology Systems, ed: John Wiley & Sons, Inc., 2011, pp. 33-60.
    [2] Wang, W., Bae, T. S., Park, Y. H., Kim, D.-H., Lee, S., Min, G., Lee, G.-H., Song, M.-K., and Yun, J., Highly Efficient and Bendable Organic Solar Cells Using a Three-Dimensional Transparent Conducting Electrode. Nanoscale. 2014.
    [3] Shim, Y.-S., Moon, H. G., Kim, D. H., Jang, H. W., Kang, C.-Y., Yoon, Y. S., and Yoon, S.-J., Transparent Conducting Oxide Electrodes for Novel Metal Oxide Gas Sensors. Sensors and Actuators B: Chemical. 2011, 160, 357-363.
    [4] Frank, G., Kauer, E., Kostlin, H., and Schmitte, F. J., Transparent Heat-Reflecting Coatings for Solar Applications Based on Highly Doped Tin Oxide and Indium Oxide. Solar Energy Materials. 1983, 8, 387-398.
    [5] Delahoy, A. E. and Guo, S., "Transparent Conducting Oxides for Photovoltaics," in Handbook of Photovoltaic Science and Engineering, ed: John Wiley & Sons, Ltd, 2011, pp. 716-796.
    [6] Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533-1554.
    [7] Li, Y., Li, Y., Liu, H., Wang, S., Wang, N., Zhuang, J., Li, X., He, X., and Zhu, D., Self-Assembled Monolayers of Porphyrin–Perylenetetracarboxylic Diimide–[60] Fullerene on Indium Tin Oxide Electrodes: Enhancement of Light Harvesting in the Visible Light Region. Nanotechnology. 2005, 16, 1899.
    [8] Perez-Morales, M., Munoz, E., Martin-Romero, M. T., and Camacho, L., Anodic Electrodeposition of Nitspp from Aqueous Basic Media. Langmuir. 2005, 21, 5468-5474.
    [9] Wang, B., Zuo, X., Wu, Y., Chen, Z., He, C., and Duan, W., Comparative Gas Sensing in Copper Porphyrin and Copper Phthalocyanine Spin-Coating Films. Sensors and Actuators B: Chemical. 2011, 152, 191-195.
    [10] Hirano, C. and Imae, T., Electrochemical Properties of Protoporphyrin Ix Zinc(Ii) Films. J. Colloid Interface Sci. 2004, 280, 478-483.
    [11] Robitaille, L. and Leclerc, M., Synthesis, Characterization, and Langmuir-Blodgett Films of Fluorinated Polythiophenes. Macromolecules. 1994, 27, 1847-1851.
    [12] Heier, P., Boscher, N. D., Bohn, T., Heinze, K., and Choquet, P., A New Class of Znii and Criii Porphyrins Incorporated into Porous Polymer Matrices Via an Atmospheric Pressure Plasma Enhanced Cvd to Form Gas Sensing Layers. Journal of Materials Chemistry A. 2014, 2, 1560-1570.
    [13] Lee, Y. S., "Self-Assembly Systems," in Self-Assembly and Nanotechnology Systems, ed: John Wiley & Sons, Inc., 2011, pp. 1-31.
    [14] Biesaga, M., Pyrzyńska, K., and Trojanowicz, M., Porphyrins in Analytical Chemistry. A Review. Talanta. 2000, 51, 209-224.
    [15] Ikeda, A., Nakasu, M., Ogasawara, S., Nakanishi, H., Nakamura, M., and Kikuchi, J.-i., Photoelectrochemical Sensor with Porphyrin-Deposited Electrodes for Determination of Nucleotides in Water. Org. Lett. 2009, 11, 1163-1166.
    [16] Machado, G. S., Lima, O. J. d., Ciuffi, K. J., Wypych, F., and Nakagaki, S., Iron(Iii) Porphyrin Supported on Metahalloysite: An Efficient and Reusable Catalyst for Oxidation Reactions. Catalysis Science & Technology. 2013, 3, 1094-1101.
    [17] Li, L.-L. and Diau, E. W.-G., Porphyrin-Sensitized Solar Cells. Chem. Soc. Rev. 2013, 42, 291-304.
    [18] Ethirajan, M., Chen, Y., Joshi, P., and Pandey, R. K., The Role of Porphyrin Chemistry in Tumor Imaging and Photodynamic Therapy. Chem. Soc. Rev. 2011, 40, 340-362.
    [19] Li, W., Lu, W., Fan, Z., Zhu, X., Reed, A., Newton, B., Zhang, Y., Courtney, S., Tiyyagura, P. T., Ratcliff, R. R., Li, S., Butler, E., Yu, H., Ray, P. C., and Gao, R., Enhanced Photodynamic Selectivity of Nano-Silica-Attached Porphyrins against Breast Cancer Cells. J. Mater. Chem. 2012, 22, 12701-12708.
    [20] Pumera, M., Graphene-Based Nanomaterials and Their Electrochemistry. Chem. Soc. Rev. 2010, 39, 4146-4157.
    [21] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., and Tour, J. M., Improved Synthesis of Graphene Oxide. ACS Nano. 2010, 4, 4806-4814.
    [22] Bissessur, R., "Inorganic-Based Nanocomposites of Conductive Polymers," in Nanostructured Conductive Polymers, ed: John Wiley & Sons, Ltd, 2010, pp. 261-288.
    [23] Konkena, B. and Vasudevan, S., Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through Pka Measurements. The Journal of Physical Chemistry Letters. 2012, 3, 867-872.
    [24] Zhu, J., Li, Y., Chen, Y., Wang, J., Zhang, B., Zhang, J., and Blau, W. J., Graphene Oxide Covalently Functionalized with Zinc Phthalocyanine for Broadband Optical Limiting. Carbon. 2011, 49, 1900-1905.
    [25] Wang, Y., Zhen, S. J., Zhang, Y., Li, Y. F., and Huang, C. Z., Facile Fabrication of Metal Nanoparticle/Graphene Oxide Hybrids: A New Strategy to Directly Illuminate Graphene for Optical Imaging. The Journal of Physical Chemistry C. 2011, 115, 12815-12821.
    [26] Dreyer, D. R., Park, S., Bielawski, C. W., and Ruoff, R. S., The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228-240.
    [27] You, J., Chen, C.-C., Dou, L., Murase, S., Duan, H.-S., Hawks, S. A., Xu, T., Son, H. J., Yu, L., Li, G., and Yang, Y., Metal Oxide Nanoparticles as an Electron-Transport Layer in High-Performance and Stable Inverted Polymer Solar Cells. Adv. Mater. 2012, 24, 5267-5272.
    [28] Cho, Y.-J., Ahn, T. K., Song, H., Kim, K. S., Lee, C. Y., Seo, W. S., Lee, K., Kim, S. K., Kim, D., and Park, J. T., Unusually High Performance Photovoltaic Cell Based on a [60]Fullerene Metal Cluster−Porphyrin Dyad Sam on an Ito Electrode. J. Am. Chem. Soc. 2005, 127, 2380-2381.
    [29] Boyd, P. D. W. and Reed, C. A., Fullerene−Porphyrin Constructs. Acc. Chem. Res. 2004, 38, 235-242.
    [30] Baskaran, D., Mays, J. W., Zhang, X. P., and Bratcher, M. S., Carbon Nanotubes with Covalently Linked Porphyrin Antennae:  Photoinduced Electron Transfer. J. Am. Chem. Soc. 2005, 127, 6916-6917.
    [31] Karousis, N., Sandanayaka, A. S. D., Hasobe, T., Economopoulos, S. P., Sarantopoulou, E., and Tagmatarchis, N., Graphene Oxide with Covalently Linked Porphyrin Antennae: Synthesis, Characterization and Photophysical Properties. J. Mater. Chem. 2011, 21, 109-117.
    [32] Driscoll, P. F., Douglass, E. F., Phewluangdee, M., Soto, E. R., Cooper, C. G. F., MacDonald, J. C., Lambert, C. R., and McGimpsey, W. G., Photocurrent Generation in Noncovalently Assembled Multilayered Thin Films. Langmuir. 2008, 24, 5140-5145.
    [33] Choi, E.-Y., Han, T. H., Hong, J., Kim, J. E., Lee, S. H., Kim, H. W., and Kim, S. O., Noncovalent Functionalization of Graphene with End-Functional Polymers. J. Mater. Chem. 2010, 20, 1907-1912.
    [34] Ward, M. D., Photo-Induced Electron and Energy Transfer in Non-Covalently Bonded Supramolecular Assemblies. Chem. Soc. Rev. 1997, 26, 365-375.
    [35] Aziz, M. A., Patra, S., and Yang, H., A Facile Method of Achieving Low Surface Coverage of Au Nanoparticles on an Indium Tin Oxide Electrode and Its Application to Protein Detection. Chem. Commun. 2008, 4607-4609.
    [36] Alvaro, M., Atienzar, P., de la Cruz, P., Delgado, J. L., Troiani, V., Garcia, H., Langa, F., Palkar, A., and Echegoyen, L., Synthesis, Photochemistry, and Electrochemistry of Single-Wall Carbon Nanotubes with Pendent Pyridyl Groups and of Their Metal Complexes with Zinc Porphyrin. Comparison with Pyridyl-Bearing Fullerenes. J. Am. Chem. Soc. 2006, 128, 6626-6635.
    [37] Cioffi, C., Campidelli, S., Sooambar, C., Marcaccio, M., Marcolongo, G., Meneghetti, M., Paolucci, D., Paolucci, F., Ehli, C., Rahman, G. M. A., Sgobba, V., Guldi, D. M., and Prato, M., Synthesis, Characterization, and Photoinduced Electron Transfer in Functionalized Single Wall Carbon Nanohorns. J. Am. Chem. Soc. 2007, 129, 3938-3945.
    [38] Danilov, M., Slobodyanyuk, I., Rusetskii, I., and Kolbasov, G., Reduced Graphene Oxide: A Promising Electrode Material for Oxygen Electrodes. Journal of Nanostructure in Chemistry. 2013, 3, 49.
    [39] Thema, F. T., Moloto, M. J., Dikio, E. D., Nyangiwe, N. N., Kotsedi, L., Maaza, M., and Khenfouch, M., Synthesis and Characterization of Graphene Thin Films by Chemical Reduction of Exfoliated and Intercalated Graphite Oxide. Journal of Chemistry. 2013, 2013, 6.
    [40] Loryuenyong, V., Totepvimarn, K., Eimburanapravat, P., Boonchompoo, W., and Buasri, A., Preparation and Characterization of Reduced Graphene Oxide Sheets Via Water-Based Exfoliation and Reduction Methods. Advances in Materials Science and Engineering. 2013, 2013, 5.
    [41] Nakagaki, S., Xavier, C. R., Wosniak, A. J., Mangrich, A. S., Wypych, F., Cantao, M. P., denicolo, I., and Kubota, L. T., Synthesis and Characterization of Zeolite-Encapsulated Metalloporphyrins. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000, 168, 261-276.
    [42] Modak, A., Nandi, M., Mondal, J., and Bhaumik, A., Porphyrin Based Porous Organic Polymers: Novel Synthetic Strategy and Exceptionally High Co2 Adsorption Capacity. Chem. Commun. 2012, 48, 248-250.
    [43] Wang, R., Wang, Y., Xu, C., Sun, J., and Gao, L., Facile One-Step Hydrazine-Assisted Solvothermal Synthesis of Nitrogen-Doped Reduced Graphene Oxide: Reduction Effect and Mechanisms. RSC Advances. 2013, 3, 1194-1200.
    [44] Pei, S. and Cheng, H.-M., The Reduction of Graphene Oxide. Carbon. 2012, 50, 3210-3228.
    [45] Park, S., Hu, Y., Hwang, J. O., Lee, E.-S., Casabianca, L. B., Cai, W., Potts, J. R., Ha, H.-W., Chen, S., Oh, J., Kim, S. O., Kim, Y.-H., Ishii, Y., and Ruoff, R. S., Chemical Structures of Hydrazine-Treated Graphene Oxide and Generation of Aromatic Nitrogen Doping. 2012.
    [46] Vandenberg, E. T., Bertilsson, L., Liedberg, B., Uvdal, K., Erlandsson, R., Elwing, H., and Lundstrom, I., Structure of 3-Aminopropyl Triethoxy Silane on Silicon Oxide. J. Colloid Interface Sci. 1991, 147, 103-118.
    [47] Gulaczyk, I., Kręglewski, M., and Valentin, A., The N–N Stretching Band of Hydrazine. J. Mol. Spectrosc. 2003, 220, 132-136.
    [48] Verma, S., Mungse, H. P., Kumar, N., Choudhary, S., Jain, S. L., Sain, B., and Khatri, O. P., Graphene Oxide: An Efficient and Reusable Carbocatalyst for Aza-Michael Addition of Amines to Activated Alkenes. Chem. Commun. 2011, 47, 12673-12675.
    [49] Siriviriyanun, A. and Imae, T., Advantages of Immobilization of Pt Nanoparticles Protected by Dendrimers on Multiwalled Carbon Nanotubes. PCCP. 2012, 14, 10622-10630.
    [50] Robinson, J. T., Tabakman, S. M., Liang, Y., Wang, H., Sanchez Casalongue, H., Vinh, D., and Dai, H., Ultrasmall Reduced Graphene Oxide with High near-Infrared Absorbance for Photothermal Therapy. J. Am. Chem. Soc. 2011, 133, 6825-6831.
    [51] Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'homme, R. K., Aksay, I. A., and Car, R., Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett. 2007, 8, 36-41.
    [52] Some, S., Kim, Y., Yoon, Y., Yoo, H., Lee, S., Park, Y., and Lee, H., High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process. Scientific Report 3.
    [53] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., and Ruoff, R. S., Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide. Carbon. 2007, 45, 1558-1565.
    [54] Mishra, S. K., Srivastava, A. K., Kumar, D., Biradar, A. M., and Rajesh, Microstructural and Electrochemical Impedance Characterization of Bio-Functionalized Ultrafine Zns Nanocrystals-Reduced Graphene Oxide Hybrid for Immunosensor Applications. Nanoscale. 2013, 5, 10494-10503.
    [55] Li, F., Wang, J., Lai, Y., Wu, C., Sun, S., He, Y., and Ma, H., Ultrasensitive and Selective Detection of Copper (Ii) and Mercury (Ii) Ions by Dye-Coded Silver Nanoparticle-Based Sers Probes. Biosens. Bioelectron. 2013, 39, 82-87.
    [56] Veli, S. and Alyuz, B., Adsorption of Copper and Zinc from Aqueous Solutions by Using Natural Clay. J. Hazard. Mater. 2007, 149, 226-233.
    [57] Tahir, S. S. and Rauf, N., Removal of Fe(Ii) from the Wastewater of a Galvanized Pipe Manufacturing Industry by Adsorption onto Bentonite Clay. Journal of Environmental Management. 2004, 73, 285-292.
    [58] Hegazi, H. A., Removal of Heavy Metals from Wastewater Using Agricultural and Industrial Wastes as Adsorbents. HBRC Journal. 2013, 9, 276-282.
    [59] Gupta, V. K., Ganjali, M. R., Norouzi, P., Khani, H., Nayak, A., and Agarwal, S., Electrochemical Analysis of Some Toxic Metals by Ion–Selective Electrodes. Crit. Rev. Anal. Chem. 2011, 41, 282-313.
    [60] Killard, A. J., "Nanostructured Conducting Polymers for (Electro)Chemical Sensors," in Nanostructured Conductive Polymers, ed: John Wiley & Sons, Ltd, 2010, pp. 563-598.
    [61] Cano, E., Torres, C. L., and Bastidas, J. M., An Xps Study of Copper Corrosion Originated by Formic Acid Vapour at 40% and 80% Relative Humidity. Mater. Corros. 2001, 52, 667-676.

    QR CODE