簡易檢索 / 詳目顯示

研究生: 武氏蓮
VU THI LIEN
論文名稱: NURBS多焦隱形眼鏡設計及殼模射出成形之收縮分析研究
Design of Multifocal Contact Lens with NURBS and Shrinkage Analysis on Shell Mold by Injection Molding Process
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-Yeu Yang
黃忠偉
Jong-Woei Whang
黃國政
Kuo-Cheng Huang
鍾國亮
Kuo-Liang Chung
王培仁
Pei-Jen Wang
顧逸霞
Yi-Sha Ku
陳炤彰
Chao-Chang A. Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 213
中文關鍵詞: 老花眼同步多焦點隱形眼鏡光學屈光度輪廓隱形眼鏡殼模Z軸收縮誤差
外文關鍵詞: Presbyopia, Multifocal contact lens, Optical power profile, Shell mold, Z-shrinkage error
相關次數: 點閱:297下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  老花眼是四十歲以後人們看不清楚近物的現象,有老花眼的人數迅速增加,老花眼矯正方法不僅能提供良好的光學視覺,更具有時尚性及便利性,同步多焦點隱形眼鏡(Multifocal Contact Lenses, MCLs)可依不同觀視距離呈現不同的屈光度,是老花眼患者的最佳選擇之一,雖然市場上具有多種同步多焦點隱形眼鏡可供使用,但設計仍需要改進以提供更好的視覺及舒適性。本研究旨在開發與分析具有NURBS(Non Uniform Rational B-Spline)曲線之對稱同步多焦點隱形眼鏡之設計方法,以獲得臨床需求,即在大範圍的中心區域具有均勻屈光度分佈及平滑的高追加度(ADD)輪廓。首先本研究已建立數學公式,用以產生光學區域之不同屈光度分佈,可由近中心區域連續變化至外部區域,並可針對不同瞳孔直徑給定ADD屈光度值;其次,對NURBS曲線之控制點(Control Points)、權值(Weight)及節點(Knots)三個參數進行優化,實現平滑連續的前弧光學曲面,並且滿足給定的屈光度輪廓;第三,本研究提供一解決方法,設計軟式多焦點隱形眼鏡於大範圍的中心區域內獲得均勻的屈光度,NURBS曲線於中心的部分區域擬合點資料與曲率中心為球面/非球面曲線,以獲得均勻的屈光度,並建立多目標優化條件,採用加權方法及模擬退火(Simulated Annealing, SA)算法求解;最後,本研究開發一補償方法,使射出成形隱形眼鏡前弧殼模之Z軸收縮誤差達到最小化,以確保製造後的軟式多焦點隱形眼鏡之中心光學區域具有均勻的屈光度分佈,並透過優化射出成形參數,以及補償原始透鏡設計之中心區域的ADD,可使射出成形前弧殼模之Z軸收縮誤差達到最小化,並對應至乾式隱形眼鏡。本研究結果已對硬式及軟式多焦點隱形眼鏡進行光學及臨床測試,由屈光度輪廓結果顯示,實際屈光度分佈與原始需求及光學模擬結果一致,代表所提出的方法可容易地調整用於新的臨床需求,本研究成功開發多焦點隱形眼鏡之設計方法,並驗證其可行性,未來可進一步研究複雜漸進變焦型隱形眼鏡之設計。


Abstract
Presbyopia is a condition in which people cannot see clearly to near objects usually after age 40. The number of presbypic people increases very quickly. Thus, presbyopia correction methods that can provide not only a good optical vision but also a fashion and convenience to wear are in great demand. Simultaneous multifocal contact lenses (CLs) that present visions from various distances at all time is one of the suitable choices for presbyopic people. Although many kinds of simultaneous CLs are available on the market, their designs still need to be improved to satisfy more and more requirements. This research aims to develop and analyze a design method of symmetric simultaneous multifocal CLs to obtain smooth anterior optical surfaces and satisfy given smooth optical power profiles with high addition (Add) power values and uniform power in large central zones by adjusting Non Uniform Rational B-Spline (NURBS) curves. Firstly, this study has developed mathematical functions to generate the given optical power distributions in which the powers continuously change from either a center-near or center-distance zone to an outer-distance or outer-near zone in optical surfaces with different change rates and Add power values for different pupil diameters. Secondly, three parameters including control points, weight and knots of cubic NURBS curves are optimized simultaneously to achieve smooth and continuous anterior optical surface profiles and satisfy the given power profiles. Thirdly, this study provides a solution for designing soft multifocal CLs to obtain a uniform optical power in a large center-distance zone.The parts of NURBS curves in the center-distance zones are fitted given spherical/aspheric curves for both data points and their centers of curvature to achieve uniform power. A multi-objective optimization problem has been established and solved by the weighted sum method and Simulated Annealing (SA) algorithm. Finally, this study has developed a compensating method to minimize the Z-shrinkage errors of anterior shell molds (SMs) corresponding to the anterior surfaces of soft CLs in injection molding (IM) process to ensure the uniform optical power in the central optical zone of soft multifocal CLs after manufacturing. The Z-shrinkage error of the anterior SM profile corresponding to the anterior optical surface profiles of dry CL in IM process can be minimized by optimizing IM process parameters and compensating the Add powers in the central zone of the original lens design. Results of this study have been tested by optical measurements for both rigid and soft multifocal CLs. The power profiles of measurement results of the lens samples agree with these of the original requirements and optical simulation results. Based on the clinical test results of soft lens samples, the proposed method can be easily adjusted to adapt new clinical requirements. Therefore, the developed design method of multifocal CLs has been verified and proven the feasibility and it can be further investigated for progressive contact lens design.

ABSTRACT I 摘要 II ACKNOWLEDGEMENT III CONTENT IV LIST OF TABLE VIII LIST OF FIGURE X NOMENCLATURE XVIII CHAPTER 1 INTRODUCTION 1 1.1. Background 1 1.1.1. Presbyopia and correction methods 1 1.1.2. Multifocal contact lenses for presbyopia 9 1.1.3. Problem statement 11 1.2. Motivation and Objectives 16 1.3 Research summary 17 1.4. Dissertation outline 20 CHAPTER 2 CONTACT LENS AND SURFACE TYPES 22 2.1. Contact lens structure 22 2.1.1. Optical region 22 2.1.2. Peripheral region and edge 25 2.1.3. Total diameter 27 2.2. Contact lens materials 28 2.2.1. Soft contacts lens’s materials 28 2.2.2. Rigid contact lens’s materials 30 2.2.3. Hybrid contact lens’s materials 31 2.3. Contact lens and multifocal contact lens design 32 2.4. Lens surface types 37 2.4.1. Conventional aspheric lens 37 2.4.2. Freeform optical surfaces 41 2.4.3. NURBS curve 45 2.5. The proposed approach 51 CHAPTER 3 NURBS MULTIFOCAL CONTACT LENS WITH GIVEN OPTICAL POWER DISTRIBUTION 53 3.1. Power profile generation 53 3.2. Objective function 58 3.3. Global optimization methods and Simulated Annealing methods 60 3.3.1. Global optimization methods 60 3.3.2. Simulated Annealing 62 3.4. Analysis, manufacture and measurement 68 3.5. Results of the proposed method with four PMMA contact lenses 70 3.6. Summary of Chapter 3 79 CHAPTER 4 NURBS MULTIFOCAL CONTACT LENS WITH UNIFORM OPTICAL POWER IN CENTER-DISTANCE ZONE 81 4.1. Multi-objective optimization problem 82 4.1.1. Power objective function 82 4.1.2. Spherical/aspherical fitting in the center zone 83 4.2. Dimensional variation of soft multifocal CLs 87 4.3. Manufacture and measurement 90 4.4. Result of the proposed method with Oculfilcon D 55% multifocal CLs. 91 4.4. Summary of Chapter 4 103 CHAPTER 5 MINIMIZATION OF SHRINKAGE ERROR OF SHELL MOLD IN INJECTION MOLDING PROCESS 105 5.1. Methodology 105 5.2. Injection molding design 108 5.3. Optimization of injection molding parameters 112 5.4. Compensation and manufacture 118 5.5. Experiment results 120 5.6. Summary of Chapter 5 130 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 131 6.1. Conclusions 131 6.2. Recommendations 132 REFERENCE 134 APPENDIX A GRAPHICAL USER INTERFACE (GUI) FOR MULTIFOCAL CONTACT LENS DESIGN 149 APPENDIX B OPTIMIZATION RESULTS 164 APPENDIX C SHELL MOLD MATERIAL 184 BIOGRAPHY OF AUTHOR 186

1. W. N. Charman, Visual Optics and Instrumentation: Optics of the Human Eye, 1-26, (CRC Press, 1991).
2. D. A. Atchison and G. Smith, Optics of the Human Eye, (Butterworth Heinemann, 2000).
3. H. Gross, F. Blechinger, and‎ B. Achtner, Handbook of Optical Systems, Vol. 4: Survey of Optical Instruments, Chap 36, 1st ed, (Wiley-VCH, 2008).
4. M. Bass, C. DeCusatis,‎ J. Enoch,‎ V. Lakshminarayanan,‎ G. Li,‎ C. MacDonald,‎ V. Mahajan,‎ and E. Stryland, Handbook of Optics, Vol. 3: Vision and Vision Optics, 3rd ed, (The McGraw-Hill, 2010).
5. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics, (SPIE Press, 2004).
6. H. L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. 14, 1684-1695 (1997).
7. D. A. Atchison and L. N. Thibos, "Optical models of the human eye," Clin Exp Optom. 99(2), 99-106 (2016).
8. B. Wang, and K. J. Ciuffreda, "Depth-of-focus of the human eye: theory and clinical implications," Surv Ophthalmol. 51(1), 75-85 (2006).
9. Anatomy of the Human Eye. Available at: <http://www.johnsonvisionassociates.com/ anatomy-of-the-eye.html>
10. The scale model eye. Available at: <http://hyperphysics.phy-astr.gsu.edu/hbase/ vision / eyescal2.html>
11. How the eye focuses light. Available at: <https://www.sciencelearn.org.nz/resources/ 50-how-the-eye-focuses-light>
12. D. Hamasaki, J. Ong, and E. Marg, “The amplitude of accommodation in presbyopia,” Am J Optom. 33(1), 3-14 (1956).
13. J. F. Koretz and G. H. Handelman, "A model for accommodation in the young human eye: the effects of lens elastic anisotropy on the mechanism," Vision Res. 23(12), 1679-1686 (1983).
14. J. F. Koretz, P. L Kaufman, M. W. Neider, P. A. Goeckner, "Accommodation and presbyopia in the human eye-aging of the anterior segment," Vision Res. 29(12), 1685-1692 (1989).
15. J. F. Koretz, P. L Kaufman, and P. A. Goeckner, "Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques," Applied Optics. 28(6), 1097-1102 (1989).
16. J. F. Koretz, Cook CA, and P. L Kaufman, "Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus," Invest Ophthalmol Vis Sci. 38(3), 569-578 (1997).
17. H. J. Burd, S. J. Judge, and M. J. Flavell, “Mechanics of accommodation of the human eye,” Vision Research. 39(9), 1591-1595 (1999).
18. R. A. Schachar, "The mechanism of accommodation and presbyopia," Int Ophthalmol Clin. 46(3), 39-61(2006).
19. W. N. Charman, "The eye in focus: accommodation and presbyopia." Clinical and Experimental Optometry. 91(3), 207-225 (2008).
20. G. Zoulinakis, JJ. Esteve-Taboada, T. Ferrer-Blasco, D. Madrid-Costa, R. Montés-Micó, "Accommodation in human eye models: a comparison between the optical designs of Navarro, Arizona and Liou-Brennan," International Journal of Ophthalmology. 10(1), 43-50 (2017).
21. Theories of eye accommodation, Available at <https://www.sciencelearn.org.nz/images/54-theories-of-eye-accommodation>.
22. D. B. Goldberg, “Updated computer-animated model elevates understanding of accommodation, presbyopia,” Ophthalmology times (2014). Availabe at <http://ophthalmologytimes.modernmedicine.com/ophthalmologytimes/content/tags/accommodation-and-presbyopia/updated-computer-animated-model-elevate?page=full>.
23. G. M. M. D. Nolan, “Physiological method of improving vision,” EP1425021 A1 (2004).
24. R. A. Schachar, F. H. Roy, Presbyopia: Cause and Treatment, (Kugler Publications, 2001).
25. G. L. Mancil, I. L. Bailey, K. E. Brookman, J. B. Campell, M. H. Cho, A. A. Rosenbloom, and J. E. Sheedy, “Optometric clinical practice guideline care of the patient with presbyopia,” American Optometric Association (2011).
26. W. Neil Charman, “Developments in the correction of presbyopia I: spectacle and contact lenses,” Ophthalmic Physiol Opt. 4(2014), 8-29.
27. G. Bailey, “Presbyopia” (2018). Available at: < http://www.allaboutvision.com/conditions/presbyopia.htm>.
28. Presbyopia correction (2013). Available at: <http://www.contactlenses.org /presbyopia.htm>.
29. Seven Treatments for Presbyopia Correction. Available at: < http://www.bettervisionguide.com/7-presbyopia-treatments/>.
30. How can presbyopia be corrected? Available at: < https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0090979/>.
31. Your vision. Available at: <http://www.opti.ee/eng/tasub-teada/nagemine/>.
32. J. E. Key, “Development of contact lenses and their worldwide use,” Eye & Contact Lens. 33(6), 343–345 (2007).
33. Brien Holden Vision Institute. Benefits of contact lenses. Available at: < https://www.brienholdenvision.org/benefits-of-contact-lenses>
34. Contact Lens Basics. All about vision. Available at: < http://www.allaboutvision.com/contacts/ contact_lenses.htm>
35. Centers for Disease Control and Prevention. Benefits of Vision Correction with Contact Lenses. Available at: < https://www.cdc.gov/contactlenses/benefits.html>
36. American Optometric Association. Advantages and disadvantages of various types of contact lenses. 2013. Available at < https://www.aoa.org/patients-and-public/caring-for-your-vision/contact-lenses/advantages-and-disadvantages-of-various-types-of-contact-lenses >.
37. M. J. Mannis, K. Zadnik, C. Coral-Ghanem, and N. Kara-José, Contact Lenses in Ophthalmic Practice, (Springer 2004).
38. A. Gasson and J. Morris, The Contact Lens Manual: A Practical Guide to Fitting, 3rd ed. (Butterworth-Heinemann, 2003).
39. W. J. Benjamin, I. M. Borish, Borish’s Clinical Refraction, 93-144, 2nd ed. (Butterworth-Heinemann–Elsevier, 2006).
40. E. S. Bennett, “Contact lens correction of presbyopia,” Clin Exp Optom. 91(3) 265-278 (2008).
41. P. B. Morgan and N. Efron, “Contact lens correction of presbyopia,” Contact Lens & Anterior Eye. 32, 191-192 (2009).
42. The vision care institute of Johnson and Johnson, Managing the presbyopia, Available at <https://www.jnjvisioncare.co.uk/sites/default/files/public /uk/tvci/eclp_chapter_8.pdf (2009)>.
43. P. B. Morgan, N. Efron, C. A. Woods, “An international survey of contact lens prescribing for presbyopia,” Clin Exp Optom. 94 (1), 87-92 (2011).
44. N. B. Hodd, “Contact lens correction for presbyopia: A simple approach to fitting,” Available at: <http://burnetthoddoptometry.com/burnetthoddoptometry/wp-content/uploads /2014/04/nigelscpd.pdf>
45. H. I. Moss, "Bifocal contact lenses-a review," Am J Optom Arch Am Acad Optom. 39, 653-668 (1962).
46. H. Toshida, K. Takahashi, K. Sado, A. Kanai, and A. Murakami, "Bifocal contact lenses: History, types, characteristics, and actual state and problems," Clinical Ophthalmology (Auckland, N.Z.). 2(4), 869-877 (2008).
47. R. L. Woods, J. E. Saunders, M. J. A. Port, "Concentric-design rigid bifocal lenses, part I: optical performance," Journal of The British Contact Lens Association. 16(1), 25-36 (1993).
48. R. Pérez-Prados, D. P.Piñero, R. J Pérez-Cambrodí, and D. Madrid-Costa, "Soft multifocal simultaneous image contact lenses: a review," Clin Exp Optom. 100(2), 107-127 (2017).
49. P. de Gracia, C. Dorronsoro, and S. Marcos, "Multiple zone multifocal phase designs," Opt. Lett. 38, 3526-3529 (2013).
50. D. W. Hansen. “Multifocal contact lenses ¬ the next generation.” Contact Lens Spectrum (2002).
51. United Nations, World Population Ageing: 1950-2050. Available at: <http://www.un.org/esa/population/publications/worldageing19502050/>
52. United Nations, World population by age and sex. Available at: < https://esa.un.org/unpd/wpp/dataquery/>
53. R. L. Woods, J. E. Saunders, and M. J. Port, "Optical performance of decentered bifocal contact lenses," Optom Vis Sci. 70(3), 171-184 (1993).
54. I. Cox, A. Apollonio, and P. Erickson, "The effect of add power on simultaneous vision, monocentric, bifocal, soft lens visual performance," International Contact Lens Clinic. 20(1), 18-22 (1993).
55. A. Hough, "Soft bifocal contact lenses: the limits of performance," Cont Lens Anterior Eye. 25(4), 161-175 (2002).
56. H. H. Dietze and M. J. Cox, "On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power," Optom Vis Sci 80(2), 126-134 (2003).
57. S. Efron, N. Efron, and P. B. Morgan, "Optical and visual performance of aspheric soft contact lenses," Optom Vis Sci. 85(3), 201-210 (2008).
58. P. S. Kollbaum, B. M. Dietmeier, M. E. Jansen, and M. E. Rickert, "Quantification of ghosting produced with presbyopic contact lens correction," Eye Contact Lens. 38(4), 252-259 (2012).
59. W. N. Charman and G. Walsh, "Retinal image quality with different designs of bifocal contact lens," Journal of The British Contact Lens Association. 9 (Supplement), 13-19 (1986).
60. D. Baude and C. Miege, "Presbyopia compensation with contact lenses —a new aspherical progressive lens," Journal of The British Contact Lens Association, 15(1), 7-15 (1992).
61. A. Bradley, H. Abdul Rahman, P. S. Soni, and X. Zhang, "Effects of target distance and pupil size on letter contrast sensitivity with simultaneous vision bifocal contact lenses," Optom Vis Sci. 70(6), 476-481 (1993).
62. K. Fisher, E. Bauman, and J. Schwallie, "Evaluation of two new soft contact lenses for correction of presbyopia: the Focus Progressives multifocal and the Acuvue Bifocal," Int Contact Lens Clin. 26(4), 92-103 (2000).
63. M. Guillon, C. Maissa, P. Cooper, K. Girard-Claudon, and T. R. Poling, “Visual Performance of a Multi-zone Bifocal and a Progressive Multifocal Contact Lens," The CLAO Journal. 28(2), 88–93 (2002).
64. R. C. Bakaraju, K. Ehrmann, A. Ho, and E. Papas, "Inherent ocular spherical aberration and multifocal contact lens optical performance," Optom Vis Sci. 87(12), 1009-1022 (2010).
65. A. Llorente-Guillemot, S. García-Lazaro, T. Ferrer-Blasco, R. J. Perez-Cambrodi, and A. Cerviño, "Visual performance with simultaneous vision multifocal contact lenses," Clin Exp Optom. 95(1), 54-59 (2012).
66. D. Madrid-Costa, S. García-Lazaro, C. Albarrán-Diego, T. Ferrer-Blasco, and R. Montés-Micó, "Visual performance of two simultaneous vision multifocal contact lenses," Ophthalmic Physiol Opt. 33(1), 51-56 (2013).
67. G. Cardona and S. López, “Pupil diameter, working distance and illumination during habitual tasks. Implications for simultaneous vision contact lenses for presbyopia,“ Journal of Optometry. 9(2), 78-84 (2016).
68. P. White, “2017 Contact Lenses and Solutions Summary,” Contact Lens Spectrum, 32(July 2017).
69. Best Way to Assess Curvature Conditions: Show the Bounding Curve for the Curvature Comb. Available at: <https://www.javelin-tech.com/blog/2012/09/curvature-conditions/>.
70. K. P. Thompson and J. P. Rolland, "Freeform Optical Surfaces: A Revolution in Imaging Optical Design," Optics and Photonics News. 23 (6), 30-35 (2012).
71. L. A. Piegl and W. Tiller, The NURBS Book, (Springer 1997).
72. G. M. Fuerter, “Spline Surfaces as Means for Optical Design,” Proc. SPIE 0554, 118 (1986).
73. R. E. Parks and F. Cooke, "Aspheric Lens Elements and Spline Functions," Applied Optics. 12(11), 2541-2543 (1973).
74. H. Chase, "Optical design with rotationally symmetric NURBS," Proc. SPIE 4832, 10-24 (2002).
75. J.Wang and F. Santosa, “A numerical method for progressive lens design,” Mathematical Models and Methods in Applied Sciences. 14(04), 619-640 (2004).
76. P. Jester, C. Menke, and K. Urban, "B-spline representation of optical surfaces and its accuracy in a ray trace algorithm," Appl. Opt. 50, 822-828 (2011).
77. Y. L. Liu, W. Y. Hsu; Y. C. Cheng, and G. D. Su. "Progressive addition lens design by optimizing NURBS surface," Proc. SPIE 8128, 81280H (2011).
78. W. Y. Hsu, Y. L. Liu, Y. C. Cheng, C. H. Kuo, C. C. Chen, and G. D. Su, “Design, fabrication, and metrology of ultra-precision optical freeform surface for progressive addition lens with B-spline description,” Int J Adv Manuf Technol. 63, 225 (2012).
79. D. Cheng, W. Zhou, C. Xu, and Y. Wang, "Optomechanical design and analysis with NURBS freeform surface," Renewable Energy and the Environment: Postdeadline Papers, OSA Postdeadline Paper Digest (2013).
80. M. P. Chrisp, “Three Mirror Anastigmat Designed with NURBS Freeform Surfaces," Renewable Energy and the Environment,” OSA Post deadline PaperDigest (2013).
81. M. P. Chrisp and B. Primeau, "Imaging with NURBS Freeform Surfaces," Imaging and Applied Optics, OSA Technical Digest (2015).
82. M. P. Chrisp, B. Primeau, M. A. Echter, “Imaging freeform optical systems designed with NURBS surfaces,” Opt. Eng. 55(7), 071208 (2016).
83. L. T. Vu, C-C. A. Chen, Y. T. Qiu, “Optimization of aspheric multifocal contact lens by spline curve,” Proc. SPIE 10021, 100210L (2016).
84. R.Wu, J. Sasián, and R. Liang, "Algorithm for designing free-form imaging optics with non-rational B-spline surfaces," Appl. Opt. 56, 2517-2522 (2017).
85. S. Plainis, D. A. Atchison, and W. N. Charman, "Power profiles of multifocal contact lenses and their interpretation," Optom Vis Sci. 90(10), 1066-1077 (2013).
86. R. Montés-Micó, D. Madrid-Costa , A. Domínguez-Vicent, L. Belda-Salmerón, and T. Ferrer-Blasco, "In vitro power profiles of multifocal simultaneous vision contact lenses," Cont Lens Anterior Eye. 37(3), 162-167 (2014).
87. D. Madrid-Costa, J. Ruiz-Alcocer, S. García-Lázaro, T. Ferrer-Blasco, and R. Montés-Micó, "Optical power distribution of refractive and aspheric multifocal contact lenses: Effect of pupil size," Cont Lens Anterior Eye. 38(5), 317-321 (2015).
88. S. Wagner, F. Conrad, R. C. Bakaraju, C. Fedtke, K. Ehrmann, and B. A. Holden, "Power profiles of single vision and multifocal soft contact lenses." Cont Lens Anterior Eye. 38(1), 2-14 (2015).
89. E. Kim, R. C. Bakaraju, and K. Ehrmann, “Power Profiles of Commercial Multifocal Soft Contact Lenses,” Optometry and Vision Science. 94(2), 183-196 (2017).
90. N. Efron, Contact Lens Practice, 2nd ed (Elsevier Health Sciences, 2010).
91. C-C. A. Chen and S.W. Chang, "Shrinkage Analysis on Convex Shell by Injection Molding", International Polymer Processing. 23(1), 65-71 (2008).
92. C-C. A. Chen, L. T. Vu, and Y. T Qiu, “Study on injection molding of shell mold for aspheric contact lens fabrication,” Procedia Engineering. 184, 344-349 (2017).
93. K. M. Tsai, "Effect of injection molding process parameters on optical properties of lenses," Applied Optics. 49(31), 6149-6159 (2010).
94. L. Li, T. W. Raasch, and A. Y. Yi, "Simulation and measurement of optical aberrations of injection molded progressive addition lenses," Applied Optics. 52(24), 6022-6029 (2013).
95. W. Douthwaite, Contact Lens Optics & Lens Design, (Butterworth-Heinemann, 2005).
96. E. S. Bennett and B. A. Weissman, Clinical Contact Lens Practice, 2nd ed, Chap. 6, (Lippincott Williams & Wilkins, 2005).
97. S. Schwartz, Geometrical and Visual Optics, 2nd ed, (McGraw-Hill Education / Medical, 2013).
98. H.W. Contact Lens. Available at: <http://www.hwlens.com/design.html>.
99. A short overview of contact lens types and history. Available at: < https://www.oscb-berlin.org/deeper-insight-into-contact-lenses/>.
100. Balanced Progressive® technology. Available at: <https://coopervision.co.za/practitioner/our-products/contact-lens-technology/balanced-progressive-technology>
101. Contact Lenses. Available at < https://entokey.com/contact-lenses/ >
102. M. M. Bomgardner, “Material and manufacturing innovations are the secrets for more comfortable – and someday more interactive – vision correction,” Chemical and engineering news: Making better contact lenses. 95 (13), 29-33(2017).
103. Scleral contact lenses. Available at: < http://mypremiereyecare.com/scleral-contact-lenses/>
104. P.Dhir, “History & materials of contact lens,” Available at: <https://pt.slideshare.net/PushkarDhir/history-materials-of-conatct-lens-by-pushkar-dhir>.
105. J. J. Nichols, “Contact lenses 2017,” Contact Lens Spectrum. 33 (January 2018) 20-25, 42.
106. K. A. Phani, K. B. Gaurav, "Contact Lens Materials and Modalities," Tr Ophtha Open Acc J. 1(2), 1-5 (2018).
107. E. S. Bennett and V. A. Henry, Soft Material Selection/Fitting and Evaluation. In Clinical Manual of Contact Lenses, 2009, Lippincott, Williams & Wilkins: Philadelphia.
108. Other Refractive Treatment Options. Available at: <http://www.eagleeyecentre.com.sg/service/lasik-refractive/lasik-treatment-options/>
109. SynergEyes Hybrid lenses-combining the superior visual acuity of a rigid lens with the comfort of a soft contact lens. Available at < http://ifeyecare.com/hybrid-lenses/>
110. R. Ngakhushi, “Contact lens design, material, verification, standards and ordering,” Available at < https://www.slideshare.net/Rajeshwori/cls-materials>
111. Rigid Gas Permeable Lenses. Bausch + Lomb. Available at http://bauschgp.com/wp-content/uploads/2014/10/rgp-material-guide.pdf
112. D. Newman, “Prescribing Multifocal Contact Lenses,” Contact Lens Spectrum, Issue: February 2011.
113. Available at < https://www.feelgoodcontacts.com/>.
114. W. J. Benjamin, “Comparing Multifocals and Monovision,” Contact Lens Spectrum, Issue: July 2007.
115. Aspheric lens. Available at < https://en.wikipedia.org/wiki/Aspheric_lens>
116. Conic constant. Available at < https://en.wikipedia.org/wiki/Conic_constant>
117. G. Heiting, “Aspheric lenses for better vision and appearance,” Available at < http://www.allaboutvision.com/lenses/aspheric-lenses.htm>
118. C. Menke and G. Forbes, "Optical design with orthogonal representations of rotationaly symmetric and freeform aspheres", Adv. Opt. Tech. 2, 97 (2013).
119. D. Ochse, K. Uhlendorf, L. Reichmann, "Describing freeform surfaces with orthogonal functions", Proc. SPIE 9626, 34 (2015)
120. H. Gross, A. Brömel, M. Beier, R. Steinkopf, J. Hartung, Y. Zhong, M. Oleszko, D. Ochse, "Overview on surface representations for freeform surfaces," Proc. SPIE 9626, 96260U (2015);
121. C.-K. Shene, “CS3621 Introduction to Computing with Geometry Notes,” Available at < https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/>
122. W. H. Beyer, CRC Standard Mathematical Tables, 31st ed (Chapman and Hall/CRC 2003).
123. https://en.wikipedia.org/wiki/Cumulative_distribution_function
124. D. D. Koch, S. W. Samuelson, E. A. Haft, and L. M. Merin, "Pupillary size and responsiveness. Implications for selection of a bifocal intraocular lens," Ophthalmology. 98(7), 1030-1035 (1991).
125. S. Wang and Z. Ma, "Supervisory and Optimal Control of Building HVAC Systems: A Review, " HVAC&R Research. 14(1), 3-32 (2008).
126. K. Ncibi, T. Sadraoui, M. Faycel, and A. Djenina, "A Multilayer Perceptron Artificial Neural Networks Based a Preprocessing and Hybrid Optimization Task for Data Mining and Classification," International Journal of Econometrics and Financial Management. 5(1), 12-21(2017),.
127. T. Weise (2009), “Global Optimization Algorithms – Theory and Application”, 2nd ed. Available at <http://www.it-weise.de/>
128. E. G. Talbi, Metaheuristics: From Design to Implementation, (John Wiley & Sons, 2009).
129. I. Boussaïd, J. Lepagnot, P. Siarry, "A survey on optimization metaheuristics," Information Sciences. 237, 82-117 (2013).
130. Y. Cui, Z. Geng, Q. Zhu, and Y. Han, "Review: Multi-objective optimization methods and application in energy saving," Energy. 125(Supplement C), 681-704 (2017).
131. N. Siddique and H. Adeli, "Simulated Annealing, Its Variants and Engineering Applications," International Journal on Artificial Intelligence Tools. 25(06), 1630001 (2016).
132. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, "Equation of State Calculations by Fast Computing Machines," The Journal of Chemical Physics. 21(6), 1087-1092 (1953).
133. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science. 220(4598), 671-679 (1983).
134. S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,” Journal of Statistical Physics. 34(5/6), 975-986 (1984).
135. Szu, H. and R. Hartley, "Fast simulated annealing," Physics Letters A. 122(3), 157-162 (1987).
136. F. Catthoor, H. de Man, J. Vandewalle, “SAMURAI: A general and efficient simulated annealing schedule with fully adaptive annealing parameters,” The VLSI journal. 6, 147-178 (1988).
137. L. Ingber, "Very fast simulated re-annealing," Mathematical and Computer Modelling. 12(8), 967-973 (1989).
138. P. J. van Laarhoven and E. H. Aarts, Simulated Annealing: Theory and Applications, (Springer, 1988).
139. R. W. Eglese, “Simulated annealing: A tool for Operational Research,” European journal of Operational research. 46 (1990), 271-281.
140. K. A. Dowsland, Simulated Annealing. In Modern Heuristic Techniques for Combinatorial Problems, (McGraw-Hill, 1995).
141. H. A. e Oliveira Junior, L. Ingber, A. Petraglia, M. R. Petraglia, and M. A. S. Machado, “Adaptive Simulated Annealing” in Stochastic Global Optimization and Its Applications with Fuzzy Adaptive Simulated Annealing. (Springer Berlin Heidelberg, 2012), 33-62.
142. Contest Plus device. Available at http://www.rotlex.com/contest-plus.
143. R.T. Marler, and J. S. Arora, “Survey of multi-objective optimization methods for engineering,” J. Struct Multidisc Optim. 26(6), 369–395 (2004).
144. R.T. Marler, and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,”J.S. Struct Multidisc Optim. 41(6), 853-862 (2010).
145. J. J. Nichols, “Contact lenses 2016: A status quo remains for much of the contact lens industry,” Contact Lens Spectrum, 32 (January 2017), 22-25 (2017).
146. S. Smith, “Contact Lens Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016 – 2024,” ReportBuyer (2016). Available at <https://www.prnewswire.com/news-releases/contact-lens-market--global-industry-analysis-size-share-growth-trends-and-forecast-2016-2024-300348841.html>.
147. P. C. Nicolson and J. Vogt, "Soft contact lens polymers: an evolution," Biomaterials. 22(24), 3273-3283 (2001).
148. L. T. Vu, C-C. A. Chen, C. W. Yu, and C. W. Yu, "Compensating additional optical power in the central zone of multifocal contact lens for minimization of shrinkage error of shell mold in injection molding process," Applied Optics 57(12), 2981-2991 (2018).
149. The abbreviated table of ANSI Standards for contact lens tolerances. Alvailable at < http://www.opticaltraining.com/html/continuing_ed/wbt/NCLE/ Modification_Delivery/page_eight.html>.
150. L. T. Vu, C-C. A. Chen, and C. W. Yu, "Optical design of soft multifocal contact lens with uniform optical power in center-distance zone with optimized NURBS," Opt. Express. 26, 3544-3556 (2018).
151. L. T. Vu, C-C. A. Chen, and P. J. T. Shum, "Analysis on multifocal contact lens design based on optical power distribution with NURBS," Appl. Opt. 56(28), 7990-7997 (2017).
152. Z. Deng, D. Cheng, Y. Hu, Y. Huang, and Y. Wang, "Design and fabrication of concave-convex lens for head mounted virtual reality 3D glasses," Proc. SPIE 9618, 2015 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, 961814 (2015).
153. C. H. Wu and Y. J. Huang, "The influence of cavity deformation on the shrinkage and warpage of an injection-molded part," The International Journal of Advanced Manufacturing Technology. 32, 1144-1154 (2006).
154. M. P. Chrisp, B. Primeau, and M. A. Echter, "Modeling and Optimization of Injection Molding Process Parameters for Thin-Shell Plastic Parts," Polymer-Plastics Technology and Engineering 48(7), 745-753 (2009).
155. N. C. Fei, N. M. Mehat, and S. Kamaruddin, "Practical Applications of Taguchi Method for Optimization of Processing Parameters for Plastic Injection Moulding: A Retrospective Review," ISRN Industrial Engineering 2013. 11 (2013).
156. S. Kitayama and S. Natsume, "Multi-objective optimization of volume shrinkage and clamping force for plastic injection molding via sequential approximate optimization," Simulation Modelling Practice and Theory 48(Supplement C), 35-44. (2014).
157. D. Annicchiarico, and J. R. Alcock, "Review of factors that affect shrinkage of molded part in injection molding," Materials and Manufacturing Processes 29(6), 662-682 (2014).
158. M. Altan, "Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods," Materials & Design. 31, 599-604 (2010).
159. R. Ramakrishnan and K. Mao, “Minimization of shrinkage in injection molding process of acetal polymer gear using Taguchi DOE optimization and ANOVA method,” International Journal of Mechanical and Industrial Technology. 4(2), 72-79 (2017).
160. P. J. Ross, Taguchi Techniques for Quality Engineering, (McGraw Hill Professional, 1996).
161. R. K. Roy, Design of Experiments using The Taguchi Approach: 16 Steps to Product and Process Improvement, (Willey, 2001).
162. H. E. Lai and P. J. Wang, "Study of process parameters on optical qualities for injection-molded plastic lenses," Appl. Opt. 47(12), 2017-2027 (2008).
163. K. M. Tsai and H. Y. Wang, "Determination of injection molding process windows for optical lenses using response surface methodology," Appl. Opt. 53(24), 5264-5274 (2014).
164. C. Y. Wang and P. J. Wang, "Analysis of optical properties in injection-molded and compression-molded optical lenses." Appl. Opt. 53(11), 2523-2531 (2014).
165. LCY Chemical Corp. Available at http://www.lcygroup.com/lcy/en/about_lcy.asp.
166. Uniformly distributed pseudorandom integers. Available at https://www.mathworks.com/help/matlab/ref/randi.html.
167. Astigmatism. Available at: < http://www.eyedoctorarlington-tx.com/astigmatism.html>.

QR CODE