簡易檢索 / 詳目顯示

研究生: 廖佑軒
You-Xuan Liao
論文名稱: 面銑式傘齒輪磨削加工模擬
GRINDING SIMULATION OF FACE-MILLED BEVEL GEARS
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 徐瑞宏
李維楨
陳冠辰
黃金龍
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 70
中文關鍵詞: 面銑式傘齒輪磨削加工三維環線法模擬體積移除率平均化加工
外文關鍵詞: bevel gear, face milling, grinding process, ring-Dexel method, material removal rate
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

螺旋傘齒輪和戟傘齒輪的加工方式有面銑式切製法以及面滾式切製法,而面銑式加工可再分為切齒加工以及磨削加工,且面銑式磨削加工較面滾式切製法與面銑式切製法擁有較佳的加工精度,能夠應用於高精度的需求,因此工業上高精度需求的齒輪多以研磨加工來對齒輪提高精度。本研究改善了以往模擬加工時使用三維環線法與刀具刃口線數學模式求解交點,嘗試改善了以往加工模擬時刀具刃口線為直邊,對砂輪刃口線進行修整(Relief),使砂輪刃口由多段曲線所組成,以滿足磨齒需求。改善了以往模擬加工時,先前齒底模擬不完整的問題,在齒底部分進行補點,藉由增加齒底齒面點數量,來提高齒底的解析度。利用砂輪刃口線數學模式與三維環線解出交點後,使用向量法判斷砂輪刃口線所解出之交點是否為新舊齒面點,以及利用邊界盒法判斷倒圓處是否為新舊齒面點,並將齒面點與齒頂圓進行三角網格鋪面形成封閉的3D網格體。計算出每一步齒輪齒空的體積,利用磨削體積變化量計算出磨削體積。再透過三角網格鋪面來建構出研磨後的齒輪產出STL檔,並對模擬出的齒輪STL進行齒面誤差分析,驗證模擬面銑式加工的正確性。最後利用磨削體積與時間的關係,算出體積移除率(Material Remove Rates),並透過提高體積移除率較低的區間,達到平均化體積移除率的效果,來提高進給速率,減少加工的時間,由單齒加工18.6秒減至13.8秒,縮短約26.4%加工時間。改良的模擬方法亦可以用於切齒加工。


The processing methods for spiral bevel gears and hypoid gears include face milling and face hobbing. Face milling can be further categorized into gear cutting and gear grinding. Face milling grinding offers superior machining accuracy compared to face hobbing and face milling, making it suitable for high-precision requirements. Therefore, in the industrial sector, gears with high precision demands are mostly processed using grinding to enhance accuracy. This study has improved upon previous simulation processes by employing a ring-Dexel method and a mathematical model for tool edge profiles to calculate intersection points. It attempts to enhance the previous machining simulations where tool edge profiles were straight by refining them through relief. This modification transforms the grinding wheel's tool edge into a series of curved segments to meet the gear profile requirements. Additionally, it has addressed issues with simulating the gear root that were present in previous simulations. It rectifies the problem of incomplete gear root simulations by adding points to the gear root, thereby increasing the number of gear root surface points to enhance the resolution of the gear root. The boundary box method is employed to determine whether the fillet region is a new or existing tooth surface point. Subsequently, tooth surface and fillet points are used to create a closed 3D mesh structure with triangular mesh surfaces. The volume of the tooth space is calculated for each step of the gear teeth, and the grinding volume is determined based on the variation in volume. Subsequently, the post-grinding gear is constructed by utilizing the triangulated mesh to generate an STL file. The simulated gear's STL file is analyzed for tooth surface errors, validating the accuracy of the simulated face milling grinding process. Finally, the material removal rate (MRR) is calculated based on the relationship between grinding volume and time. By averaging the feed rate in intervals with lower MRR, the efficiency of the grinding process is enhanced, leading to a reduction in processing time. This improvement results in a reduction of processing time from 18.6 seconds per tooth to 13.8 seconds per tooth, a reduction of approximately 26.4%. The improved simulation method can also be applied to gear cutting processes.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 目 錄 VI 符號索引 VIII 圖索引 XII 表索引 XIV 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 5 1.4 研究目的 5 1.5 論文架構 5 第2章 面銑式戟齒輪研磨齒面數學模式 7 2.1 前言 7 2.2 戟齒輪齒胚設計與參數計算 7 2.3 戟齒輪研磨機之數學模式 8 2.4 面銑式研磨戟齒輪之砂輪輪廓數學模式 10 2.5 數值範例 12 2.5.1 戟齒輪對之基本參數數值範例 13 2.5.2 砂輪輪廓數值範例 14 2.5.3 機械設定參數及戟齒輪對3D模型 19 2.5.4 五軸CNC研磨機磨齒座標值 20 2.6 小結 21 第3章 三維環線法研磨加工模擬砂輪刀具面交點之計算 22 3.1 前言 22 3.2 三維環線法齒胚數學模式 22 3.3 刀具砂輪面定義 23 3.4 解砂輪齒形面與齒胚三維環線交點 24 3.5 解砂輪倒圓補點 25 3.6 創成法加工齒面點補點 26 3.7 數值範例 26 3.8 小結 29 第4章 齒面磨削點計算 30 4.1 前言 30 4.2 判斷從小端到大端每個截面的齒面磨削點 30 4.3 成形法齒面磨削點計算 30 4.4 創成法齒面磨削點計算 31 4.5 以三角網格對齒輪磨削面鋪面 33 4.6 每步磨削體積計算 34 4.7 數值範例 35 4.8 小結 43 第5章 齒輪研磨之體積移除率及其進給速度平均化 44 5.1 前言 44 5.2 體積移除率MRR 44 5.3 加工平均化 44 5.4 數值範例-小齒輪創成法研磨加工(加工平均化前) 44 5.5 數值範例小齒輪創成法研磨加工(加工平均化後) 47 5.6 小結 49 第6章 結論與未來展望 50 6.1 結論 50 6.2 未來展望 50 參考文獻 52

[1]Litvin, F. L., and Gutman, Y., 1981, "Methods of synthesis and analysis for hypoid gear-Drives of fifi formate and “helixform”: Part 1. Calculations for machine settings for member gear manufacture of the formate and helixform hypoid gears," J. Mech. Des., Trans. ASME, 103(1), pp. 83-88.
[2]Litvin, F. L., Zhang, Y., Lundy, M., and Heine, C., 1988, "Determination of settings of a tilted head cutter for generation of hypoid and spiral bevel gears," J. Mech. Des., Trans. ASME, 110(4), pp. 495-500.
[3]Fong, Z. H., and Tsay, C. B., 1991, "A mathematical model for the tooth geometry of circular-cut spiral bevel gears," J. Mech. Des., Trans. ASME, 113(2), pp. 174-181.
[4]Lin, C. Y., Tsay, C. B., and Fong, Z. H., 1997, "Mathematical model of spiral bevel and hypoid gears manufactured by the modified roll method," Mech. Mach. Theory, 32(2), pp. 121-136.
[5]Fong, Z. H., and Tsay, B. C. B., 1991, "A study on the tooth geometry and cutting machine mechanisms of spiral bevel gears," J. Mech. Des., Trans. ASME, 113(3), pp. 346-351.
[6]Fong, Z. H., 2000, "Mathematical model of universal hypoid generator with supplemental kinematic flank correction motions," J. Mech. Des., Trans. ASME, 122(1), pp. 136-142.
[7]Shih, Y. P., Fong, Z. H., and Lin, G. C. Y., 2007, "Mathematical model for a universal face hobbing hypoid gear generator," J. Mech. Des., Trans. ASME, 129(1), pp. 38-47.
[8]Shih, Y. P., and Fong, Z. H., 2008, "Flank correction for spiral bevel and hypoid gears on a six-Axis CNC hypoid generator," J. Mech. Des., Trans. ASME, 130(6), pp. 0626041-06260411.
[9]Fan, Q., Dafoe, R. S., and Swanger, J. W., 2008, "Higher-order tooth flank form error correction for face-milled spiral bevel and hypoid gears," J. Mech. Des., Trans. ASME, 130(7), pp. 0726011-0726017.
[10]Fan, Q., 2010, "Tooth surface error correction for face-hobbed hypoid gears," J. Mech. Des., Trans. ASME, 132(1), pp. 0110041-0110048.
[11]Shih, Y. P., Sun, Z. H., and Lai, K. L., 2017, "A flank correction face-milling method for bevel gears using a five-axis CNC machine," Int. J. Adv. Manuf. Technol., 91(9-12), pp. 3635-3652.
[12]Hsu, R. H., Shih, Y. P., Fong, Z. H., Huang, C. L., Chen, S. H., Chen, S. S., Lee, Y. H., and Chen, K. H., 2020, "Mathematical model of a vertical six-axis Cartesian computer numerical control machine for producing face-milled and face-hobbed bevel gears," J. Mech. Des., Trans. ASME, 142(4).
[13]Lorensen, W. E., and Cline, H. E., 1987, "Marching cubes: a high resolution 3D surface construction algorithm," Comput Graphics (ACM), 21(4), pp. 163-169.
[14]Gottschalk, S., Lin, M. C., and Manocha, D., 1996, "OBBTree: A hierarchical structure for rapid interference detection," Proceedings of the 1996 Computer Graphics Conference, SIGGRAPH, New Orleans, LA, USA, pp. 171-180.
[15]Eberly, D., 2001, "Dynamic collision detection using oriented bounding boxes," Mathematics.
[16]Van Hook, T., 1986, "Real-time shaded NC milling display," 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1986, pp. 15-20.
[17]Zhang, W., Peng, X., Leu, M. C., and Zhang, W., 2007, "A novel contour generation algorithm for surface reconstruction from dexel data," J. Comput. Inf. Sci. Eng., 7(3), pp. 203-210.
[18]Böß, V., Denkena, B., Breidenstein, B., Dittrich, M. A., and Nguyen, H. N., 2019, "Improving technological machining simulation by tailored workpiece models and kinematics," 17th CIRP CMMO, 82, pp. 224-230.
[19]Inui, M., Huang, Y., Onozuka, H., and Umezu, N., 2020, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation," 48th SME NAMRC, 48, pp. 520-527.
[20]丁詮峰,2021,基於三維環線法之傘齒輪面銑式切削模擬,碩士論文,國立臺灣科技大學,台北市。
[21]張文謙,2022,傘齒輪CNC切齒機之面銑式加工,碩士論文,國立台灣科技大學,台北市。
[22]Hua-Yun You, Pei-Qing Ye, Jin-song Wang and Xing-Yi Deng,2003, "Design and application of CBN shape grinding wheel for gears"
[23]Warkentin, A., Ismail, F., and Bedi, S., 1998, "Intersection approach to multi-point machining of sculptured surfaces," Comput. Aided Geom. Des., 15(6), pp. 567-584.
[24]Warkentin, A., Ismail, F., and Bedi, S., 2000, "Multi-point tool positioning strategy for 5-axis machining of sculptured surfaces," Comput. Aided Geom. Des., 17(1), pp. 83-100.
[25]Yanwei, X., Lianhong, Z., Wei, W., and Leping, W., 2009, "Virtual simulation machining on spiral bevel gear with new type spiral bevel gear milling machine," ICMTMA, Zhangjiajie, Hunan, 2, pp. 432-435.
[26]Wang, Y., Wang, T. Y., Lin, F. X., Lu, Z. L., and Wang, D., 2013, "The research of the epicycloids bevel gear cutting based on the common six-axis machine," Advanced Materials Research, Vol.819, pp. 110-114.
[27]Altintas, Y., and Merdol, S. D., 2007, "Virtual high performance milling," CIRP Ann. Manuf. Technol., 56(1), pp. 81-84.
[28]Merdol, S. D., and Altintas, Y., 2008, "Virtual simulation and optimization of milling applications - Part II: Optimization and feedrate scheduling," J. Manuf. Sci. Eng. Trans. ASME, 130(5), pp. 0510051-05100510.
[29]Chen, S. H., and Fong, Z. H., 2015, "Study on the cutting time of the hypoid gear tooth flank," Mech. Mach. Theory., 84, pp. 113-124.
[30]Fu, H. J., DeVor, R. E., and Kapoor, S. G., 1984, " Mechanistic model for the prediction of the force system in face milling operations," J. Eng. Ind. Trans. ASME, 106(1), pp. 81-88.
[31]Suzuki, T., Kondo, S., and Ueno, T., 1985, " Study on the cutting forces for spiral bevel gears," Bull. JSME, 28(240), pp. 1316-1323.
[32]Kundrák, J., Markopoulos, A. P., Makkai, T., Deszpoth, I., and Nagy, A., 2018, "Analysis of the effect of feed on chip size ratio and cutting forces in face milling for various cutting speeds," Manuf. Technol., 18(3), pp. 431-438.
[33]McCloskey, P., Katz, A., Berglind, L., Erkorkmaz, K., Ozturk, E., and Ismail, F., 2019, "Chip geometry and cutting forces in gear power skiving," CIRP Ann. Manuf. Technol., 68(1), pp. 109-112.
[34]Azvar, M., Katz, A., Van Dorp, J., and Erkorkmaz, K., 2021, "Chip geometry and cutting force prediction in gear hobbing," CIRP Ann. Manuf. Technol., 70(1), pp. 95-98.
[35]Onozuka, H., Tayama, F., Huang, Y., and Inui, M., 2020, "Cutting force model for power skiving of internal gear," J. Manuf. Processes, 56, pp. 1277-1285.
[36]Zheng, F., Han, X., Hua, L., Tan, R., and Zhang, W., 2021, "A semi-analytical model for cutting force prediction in face-milling of spiral bevel gears," Mech. Mach. Theory, 156.
[37]Zheng, F., Han, X., Lin, H., and Zhao, W., 2021, "Research on the cutting dynamics for face-milling of spiral bevel gears," Mech. Syst. Signal Process, 153.
[38]B. Anand Ronald, L. Vijayaraghavan, R. Krishnamurthy,2008 "Studies on the influence of grinding wheel bond material on the grindability of metal matrix composites"
[39]Wulin Zhang,Pengfei Zhang,Jun ZhangXiaoqiang Fan ,Minhao Zhu,2020 "Probing the effect of abrasive grit size on rail grinding behaviors"
[40]C. Heinzel , J. Heinzel , N. Guba, T. Hüsemann ,2021, "Comprehensive analysis of the thermal impact and its depth effect in grinding".
[41]ANSI/AGMA ISO 23509-A08, 2008, "Bevel and hypoid gear geometry," Alexandria, USA.
[42]Shih, Y. P., Fong, Z. H., and Lin, G. C. Y., 2006, "Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator," Journal of Mechanical Design, 129(1), pp. 38-47.
[43]Foley, T. A., Farin, G. E., & Hansford, D. (2001). Computation of polyhedral volumes using a weighted Delaunay triangulation. Computer-Aided Design, 33(3), 215-222.

無法下載圖示 全文公開日期 2028/08/29 (校內網路)
全文公開日期 2028/08/29 (校外網路)
全文公開日期 2028/08/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE