簡易檢索 / 詳目顯示

研究生: 蔡汀藍
Ting-Lan Tsai
論文名稱: 以材質模糊減少虛擬實境內容引發動暈症之研究
Research on Reducing Cybersickness by Using Texture Blur in Virtual Reality Content
指導教授: 陳建宇
Chien-Yu Chen
口試委員: 林伯昰
Bor-Shyh Lin
胡國瑞
Kuo-Jui Hu
鄧清龍
Qing-Long Deng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 動暈症虛擬實境材質模糊渲染
外文關鍵詞: Cybersickness, Virtual Reality, Texture Blur, Rendering
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為減少VR使用者在虛擬實境體驗過程中產生不舒適而提出一項新的技術──材質模糊。許多VR使用者在遊玩過程中因各種緣故(如感知不匹配等)而容易產生動暈症等症狀,這使得VR內容設計者需要針對使用者舒適度調整VR內容設計,以減少使用者產生不舒適的機會。
    本研究的實驗參與者人數為22人(16男6女),平均年齡24.4±2.6歲。所有實驗參與者皆執行6次實驗,實驗分成三種VR遊戲模式:直線行走(7.9 m/s)、直線行走(9.5 m/s)與自由移動(7.9 m/s),分別探討三種遊戲模式下有無使用材質模糊的受試者感受差異。每次實驗時間約40分鐘,分為第一階段:VR遊戲實驗前靜坐休息(10分鐘)、第二階段:VR遊戲實驗中(15分鐘)以及第三階段:VR遊戲實驗後靜坐休息(10分鐘)。三階段均做心電圖量測,並在第一階段與第三階段請受試者填寫模擬器動暈問卷(SSQ),第二階段則以每五分鐘為間隔口頭回答不舒適度分數。實驗結果分為主觀與客觀數據,主觀數據有口述不舒適度分數以及SSQ問卷的各項動暈症病症分類分數以及單項病症分數;客觀數據則為透過心電圖數據分析計得HRV生理訊號。
    實驗結果顯示,三種不同VR遊戲模式在有使用材質模糊狀態下能使受試者在遊玩過程中產生較少的口述不舒適度分數。且在SSQ問卷研究結果顯示,有使用材質模糊狀態下動暈症症狀分數有較低於無使用材質模糊的趨勢。然而,在生理訊號HRV數據中則無法得到顯著的結果論述。


    This thesis proposed a new technique, texture blur, to reduce the discomfort of VR users during the virtual reality experience. Due to various reasons such as perception mismatch, some VR users easily exhibit symptoms of cybersickness during the VR game. Therefore, VR content designers should adjust the VR content design to reduce the possibility of user discomfort.
    Twenty-two participants were recruited in our experiment, 16 males and 6 females with an average age of 24.4±2.6 years. All participants performed 6 experiments, and there were three VR game modes: straight walking (7.9 m/s), straight walking (9.5 m/s) and free movement (7.9 m/s). The difference in severity of cybersickness between with and without texture blur condition were discussed separately in the three game modes. Each experiment took about 40 minutes and was divided into three sections. The first section: sit and rest before the VR game experiment (10 minutes), the second section: during the VR game experiment (15 minutes) and the third section: sit and rest after the VR game experiment (10 minute). The ECG measurement was performed in all three sections, and the subjects were asked to fill in the simulator sickness questionnaire (SSQ) in the first and third section. In the second section, subjects verbally answered the discomfort score every five minutes during the VR game. The subjective experimental result includes the verbally answered discomfort score, the SSQ scores of each classification of motion sickness and the 16 symptoms scores from SSQ. The objective experimental result is the HRV physiological signal calculated by ECG data analysis.
    The result shows that the use of texture blur made subjects produced less verbally answered discomfort score during the three different VR game modes. And the SSQ results show that the symptoms scores of cybersickness in with texture blur condition was lower than without texture blur condition. However, in the HRV data of physiological signals, significant results cannot be obtained.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 X 第1章、 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 論文架構 2 第2章、 文獻回顧 4 2.1 虛擬實境 4 2.1.1 虛擬實境的定義與原理 4 2.1.2 虛擬實境與人眼視覺 5 2.1.3 虛擬實境與人體知覺 6 2.2 虛擬實境對人的影響 8 2.2.1 動暈症的定義與分類 8 2.2.2 引發Cybersickness理論 10 2.2.3 造成Cybersickness的影響因素 11 2.2.4 虛擬實境造成不舒適的其他影響因素 13 2.3 減少動暈症之方法 15 2.3.1 以景深模糊技術減少動暈症之研究 15 2.4 主觀問卷調查 17 2.4.1 主觀問卷調查 17 2.4.2 四分不適量表(four point malaise scale) 18 2.5 客觀生理訊號分析方法 19 2.5.1 心電圖 19 2.5.2 心率變異度 21 2.5.3 以心電圖與心率變異度評估動暈症症狀之研究 23 第3章、 研究方法 24 3.1 虛擬實境實驗遊戲設計 24 3.1.1 Texture Blur 技術 24 3.1.2 模糊權重與距離參數 25 3.1.3 實驗變項 27 3.1.4 VR實驗遊戲內容 29 3.2 實驗設計 30 3.2.1 實驗對象 30 3.2.2 研究假說 30 3.2.3 實驗環境 31 3.2.4 實驗流程 32 3.3 實驗方法 33 3.3.1 實驗設備 33 3.3.2 客觀生理訊號量測 34 3.3.3 主觀問卷 34 3.3.4 統計方式 36 第4章、 研究結果:材質模糊研究 37 4.1 口述舒適度結果 37 4.2 SSQ問卷結果 43 4.2.1 SSQ問卷四項分類結果 43 4.2.2 SSQ問卷16項病狀分析結果 46 第5章、 研究結果:移動速度研究 48 5.1 口述舒適度結果 48 5.2 SSQ問卷結果 50 5.2.1 SSQ問卷四項分類結果 50 5.2.2 SSQ問卷16項病狀分析結果 52 第6章、 研究結果:移動方式研究 53 6.1 口述舒適度結果 53 6.2 SSQ問卷結果 55 6.2.1 SSQ問卷四項分類結果 55 6.2.2 SSQ問卷16項病狀分析結果 57 第7章、 結果與討論 61 7.1 材質模糊的影響 61 7.1.1 材質模糊對口述舒適度的影響 61 7.1.2 材質模糊對SSQ問卷分數的影響 61 7.1.3 材質模糊對HRV的影響 62 7.1.4 小結 63 7.2 移動速度的影響 64 7.2.1 移動速度對口述舒適度的影響 64 7.2.2 移動模式對SSQ問卷分數的影響 64 7.2.3 小結 65 7.3 移動模式的影響 65 7.3.1 移動模式對口述舒適度的影響 65 7.3.2 移動模式對SSQ問卷分數的影響 66 7.3.3 小結 66 7.4 實驗過程討論 67 第8章、 結論與未來展望 69 8.1 結論 69 8.2 未來展望 70 參考文獻 71 附錄一、行為與社會科學研究倫理審查核可證明 74

    [1] Jerald, J. (2015). The VR book: Human-centered design for virtual reality. Morgan & Claypool.
    [2] Bowins, B. (2010). Motion sickness: A negative reinforcement model. Brain research bulletin, 81(1), 7-11.
    [3] Rebenitsch, L., & Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20(2), 101-125.
    [4] Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology. John Wiley & Sons
    [5] Davis, S., Nesbitt, K., & Nalivaiko, E. (2014, December). A systematic review of cybersickness. In Proceedings of the 2014 Conference on Interactive Entertainment (pp. 1-9).
    [6] Alger, M. (2015). Visual design methods for virtual reality. Ravensbourne. http://aperturesciencellc. com/vr/VisualDesignMethodsforVR_MikeAlger. pdf.
    [7] Burns, E., Razzaque, S., Panter, A. T., Whitton, M. C., McCallus, M. R., & Brooks Jr, F. P. (2006). The hand is more easily fooled than the eye: Users are more sensitive to visual interpenetration than to visual-proprioceptive discrepancy. Presence: teleoperators & virtual environments, 15(1), 1-15.
    [8] Samuel, A. J., Solomon, J., & Mohan, D. (2015). A critical review on the normal postural control. Physiotherapy and Occupational Therapy Journal, 8(2), 71.
    [9] Stanney, K., Kennedy, R. and Drexler, J. 1997. Cybersickness is not simulator sickness. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 41(2):1138-1142.
    [10] Riccio, G. E., & Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability. Ecological psychology, 3(3), 195-240.
    [11] LaViola Jr, J. J. (2000). A discussion of cybersickness in virtual environments. ACM Sigchi Bulletin, 32(1), 47-56.
    [12] Cobb, S., Nichols, S., Ramsey, A., and Wilson, J. Virtual reality-induced symptoms and effects (VRISE). 1999. Presence: Teleoperators and Virtual Environments, 8(2):169-186.
    [13] Kolasinski, E. M. 1995. Simulator sickness in virtual environments. Technical Report. United States Army Research Institute for Behavioral and Social Sciences.
    [14] Howarth, P . and Costello, P . 1997. The occurrence of virtual simulation sickness symptoms when an HMD was used as a personal viewing system. Displays, 18(2):107-116.
    [15] Porcino, T. M., Clua, E., Trevisan, D., Vasconcelos, C. N., & Valente, L. (2017, April). Minimizing cyber sickness in head mounted display systems: design guidelines and applications. In 2017 IEEE 5th international conference on serious games and applications for health (SeGAH) (pp. 1-6). IEEE.
    [16] McCauley, M. and Sharkey, T. 1992. Cybersickness: Perception of self-motion in virtual environments. Presence: Teleoperators and Virtual Environments, 1(3):311-318.
    [17] Kramida, G. (2015). Resolving the vergence-accommodation conflict in head-mounted displays. IEEE transactions on visualization and computer graphics, 22(7), 1912-1931.
    [18] Carnegie, K., & Rhee, T. (2015). Reducing visual discomfort with HMDs using dynamic depth of field. IEEE computer graphics and applications, 35(5), 34-41.
    [19] Hillaire, S., Lécuyer, A., Cozot, R., & Casiez, G. (2008). Depth-of-field blur effects for first-person navigation in virtual environments. IEEE computer graphics and applications, 28(6), 47-55.
    [20] Nie, G. Y., Duh, H. B. L., Liu, Y., & Wang, Y. (2019). Analysis on Mitigation of Visually Induced Motion Sickness by Applying Dynamical Blurring on a User's Retina. IEEE transactions on visualization and computer graphics.
    [21] Kennedy, R. S., Lane, N., Berbaum, K. and Lilienthal, M. 1993. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3):203-220.
    [22] Golding, J. F., & Markey, H. M. (1996). Effect of frequency of horizontal linear oscillation on motion sickness and somatogravic illusion. Aviation, space, and environmental medicine, 67(2), 121-126.
    [23] Dennison, M. S., Wisti, A. Z., & D’Zmura, M. (2016). Use of physiological signals to predict cybersickness. Displays, 44, 42-52.
    [24] Garcia, T. B. (2013). 12-lead ECG: The art of interpretation. Jones & Bartlett Publishers.
    [25] McFee, R., & Parungao, A. (1961). An orthogonal lead system for clinical electrocardiography. American Heart Journal, 62(1), 93-100.
    [26] van Ravenswaaij-Arts, C. M., Kollee, L. A., Hopman, J. C., Stoelinga, G. B., & van Geijn, H. P. (1993). Heart rate variability. Annals of internal medicine, 118(6), 436-447.
    [27] Cornforth, D. J., Tarvainen, M. P., & Jelinek, H. F. (2014). How to calculate Renyi entropy from heart rate variability, and why it matters for detecting cardiac autonomic neuropathy. Frontiers in bioengineering and biotechnology, 2, 34.
    [28] Camm, A. J., Malik, M., Bigger, J. T., Breithardt, G., Cerutti, S., Cohen, R. J., ... & Lombardi, F. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.
    [29] Guyton, A. C., & Hall, J. E. (1986). Textbook of medical physiology (Vol. 548). Philadelphia: Saunders.
    [30] Kim, Y., Kim, H., Kim, E., Ko, H. and Kim, H. 2005. Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5):616-625.
    [31] Malińska, M., Zużewicz, K., Bugajska, J., & Grabowski, A. (2015). Heart rate variability (HRV) during virtual reality immersion. International Journal of Occupational Safety and Ergonomics, 21(1), 47-54.
    [32] Ohyama, S., Nishiike, S., Watanabe, H., Matsuoka, K., Akizuki, H., Takeda, N., & Harada, T. (2007). Autonomic responses during motion sickness induced by virtual reality. Auris Nasus Larynx, 34(3), 303-306.
    [33] Magaki, T., & Vallance, M. (2019, March). Developing an Accessible Evaluation Method of VR Cybersickness. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 1072-1073). IEEE.
    [34] Lin, Y. T., Chien, Y. Y., Wang, H. H., Lin, F. C., & Huang, Y. P. (2018, May). 65‐3: The Quantization of Cybersickness Level Using EEG and ECG for Virtual Reality Head‐Mounted Display. In SID Symposium Digest of Technical Papers (Vol. 49, No. 1, pp. 862-865).
    [35] Alger, M. (2015). Visual design methods for virtual reality. Ravensbourne. http://aperturesciencellc. com/vr/VisualDesignMethodsforVR_MikeAlger. pdf.
    [36] So, R. H., Lo, W. T., & Ho, A. T. (2001). Effects of navigation speed on motion sickness caused by an immersive virtual environment. Human factors, 43(3), 452-461.
    [37] Bonato, F., Bubka, A., Palmisano, S., Phillip, D., & Moreno, G. (2008). Vection change exacerbates simulator sickness in virtual environments. Presence: Teleoperators and Virtual Environments, 17(3), 283-292.
    [38] Chen, W., Plancoulaine, A., Férey, N., Touraine, D., Nelson, J., & Bourdot, P. (2013, October). 6DoF navigation in virtual worlds: comparison of joystick-based and head-controlled paradigms. In Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology (pp. 111-114).
    [39] https://www.vive.com/tw/product/vive/
    [40] https://www.tomorrowtech41.com/products/htc-vive-re
    [41] Howarth, P. A., & Hodder, S. G. (2008). Characteristics of habituation to motion in a virtual environment. Displays, 29(2), 117-123.
    [42] Dennison, M. S., Wisti, A. Z., & D’Zmura, M. (2016). Use of physiological signals to predict cybersickness. Displays, 44, 42-52.

    無法下載圖示 全文公開日期 2025/08/17 (校內網路)
    全文公開日期 2040/08/17 (校外網路)
    全文公開日期 2040/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE