簡易檢索 / 詳目顯示

研究生: 彭建儒
Chien-ju Peng
論文名稱: 鋰離子混合式電容器搭配 LiTi1.5Zr0.5(PO4)3 LTZP或 LiSn2(PO4)3 LSP負極
Lithium ion hybrid capacitors equipped with LiTi1.5Zr0.5(PO4)3 LTZP or LiSn2(PO4)3 LSP negative electrode
指導教授: 蔡大翔
Dah-shyang Tsai
口試委員: 周振嘉
Chen-chia Chou
吳溪煌
She-huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 143
中文關鍵詞: 混合式電容器平行板電容器鋰嵌入嵌出負極材料磷酸鋰鈦鋯磷酸鋰錫能量密度鋰化程序庫倫效率
外文關鍵詞: Hybrid capacitor, Parallel-plate capacitors, Lithium intercalation/deintercalation, Negative electrode materials, Lithium titanium zicronium phosphate, Lithium tin phosphate, Energy density, Lithiation, Coulombic efficiency
相關次數: 點閱:320下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鋰離子混合式電容器為一種新型儲能元件,結合電池的高能量密度與電容器的高功率密度為其特色。本研究中,我們使用鋰離子混合式平行板電容器,搭配鋰嵌入負極及用於超高電容器的活性碳當正極材料。選用兩種負極材料,LiTi1.5Zr0.5(PO4)3 LTZP和LiSn2(PO4)3 LSP進行研究。透過X光繞射(XRD)、掃描式電子顯微鏡(SEM)、氣體吸附法(BET)量測電極材料之晶體結構、表面構形以及表面積。使用循環伏安法(CV)、恆電流充放電、循環壽命測試和電化學交流阻抗(EIS)測量單電極及電容器的電化學性質。
LTZP/AC(1:1)混合式電容器的放電曲線隨時間呈現指數型下降,在電位窗口3.4 V,放電得到能量密度46.7 Wh kg-1及功率密度80.3 W kg-1。當電流密度為0.07 A g-1時,得到極高的電容量,> 200 F g-1,而庫倫效率也高達90 %以上。
另一方面,LSP/AC(1:1.0)混合式電容器的放電曲線於高電壓範圍呈現駝背的特徵。在電位窗口3.6 V,搭載鋰化程度低的LSP電容器可以輸出能量密度23.2 Wh kg-1及功率密度41.7 W kg-1。而搭載鋰化程度高的LSP電容器,則能夠釋出更多的能量,能量密度達到28.7 Wh kg-1於功率密度37.9 W kg-1。但是循環測試中,鋰化程度較高的LSP電容器受鋰與錫金屬的電化學反應影響,庫倫效率僅70 %。


Lithium ion hybrid capacitor (LIHC) is a new type of energy storage device, featured with battery-like high energy density and capacitor-like high power density. In this study, we investigate the LIHCs of parallel-plate configuration, equipped with a negative electrode of lithium intercalation and a positive electrode of active carbon for regular ultracapacitor. Two negative electrodes are employed, one contains LiTi1.5Zr0.5 (PO4)3 LTZP and the other contains LiSn2(PO4)3 LSP. Crystal structure, morphology, and surface area of the electrode are examined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and gas adsorption spectroscopy (BET). The electrochemical properties of single electrodes and capacitors are measured using cyclic voltammetry (CV), galvanostatic charge/ discharge, cycle life test, and electrochemical impedance spectroscopy (EIS).
Discharge of the hybrid capacitor of LTZP/AC(1:1) displays an exponentially decaying voltage with respect to time. In the potential window 3.4 V, this capacitor discharges with energy density 46.7 Wh kg-1 and power density 80.3 W kg-1. At current density 0.07 A g-1, the capacitance value is high, > 200 F g-1, so is coulombic efficiency, above 90%.
On the other hand, discharge of the LSP/AC(1:1.0) hybrid capacitor displays a decaying voltage curve with hunchbacked character in the high voltage region. In the potential window 3.6 V, this capacitor discharges with energy density 23.2 Wh kg-1 and power density 41.7 W kg-1 if the degree of lithiation is low in LSP. This capacitor is capable of discharging more energy, if the degree of lithiation is higher in LSP. The energy density reaches 28.7 Wh kg-1, with power density 37.9 W kg-1. But the capacitor of high lithiation in LSP also has a low coulombic efficiency  70 % in cycle life test due to the electrochemical reaction between lithium and tin metals.

摘要 I ABSTRACT III 目錄 V 圖目錄 X 表目錄 XVIII 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與理論基礎 3 2.1 電化學電容器(Electrochemical capacitors, EC) 3 2.2 電雙層電容器(Electrochemical Double-layer Capacitors, EDLC) 5 2.3 鋰離子混合式電容器 (Lithium-ion hybrid capacitors, LIHC) 7 2.3.1 鋰離子混合式電容器正極材料 8 2.3.2 鋰離子混合式電容器負極材料 9 2.3.3 鋰離子混合式電容器電解液[7] 15 第三章 實驗方法與步驟 17 3.1 實驗藥品耗材與儀器設備 17 3.1.1 實驗藥品及耗材 17 3.1.2 分析儀器 22 3.2 實驗流程 22 3.2.1 正極漿料製備 22 3.2.2 負極材料合成 23 3.2.3 負極漿料製備 25 3.2.4 鋰離子混合式電容器之電極準備 26 3.2.5 鋰離子混合式電容器組裝 27 3.2.6 電化學量測流程 27 3.3 實驗方法 28 3.4 電極材料鑑定與分析 35 3.4.1 X光繞射分析 35 3.4.2 比表面積與微孔徑分析 36 3.4.3 電化學特性分析 37 3.4.4 電化學計算分析 38 第四章 結果與討論 39 4.1 電極材料性質測試 39 4.1.1 活性碳正極材料 39 4.1.1.1 比表面積及微孔徑分析 39 4.1.1.2 循環伏安分析 44 4.1.2 LTZP負極材料 49 4.1.2.1 X光繞射分析 49 4.1.2.2 單電極充、放電行為 50 4.1.3 LSP負極材料 55 4.1.3.1 X光繞射分析 55 4.1.3.2 單電極充、放電行為 56 4.2 鋰離子混合式電容器性質測試 64 4.2.1 LTZP/AC(1:1)之鋰離子混合式電容器設計 64 4.2.1.1 恆電流充、放電分析 64 4.2.1.2 正、負極放電特性分析 66 4.2.1.3 比電量分析 69 4.2.1.4 功率損失分析 70 4.2.1.5 放電特性分析 72 4.2.1.6 循環壽命測試 73 4.2.2 LSP/AC(1:0.5)之鋰離子混合式電容器設計 76 4.2.2.1 恆電流充、放電分析 77 4.2.2.2 正、負極放電特性分析 78 4.2.2.3 比電量分析 82 4.2.2.4 功率損失分析 83 4.2.2.5 放電特性分析 84 4.2.2.6 循環壽命測試 86 4.2.3 LSP/AC(1:1.0)之鋰離子混合式電容器設計 90 4.2.3.1 恆電流充、放電分析 90 4.2.3.2 正、負極放電特性分析 92 4.2.3.3 比電量分析 95 4.2.3.4 功率損失分析 96 4.2.3.5 放電特性分析 97 4.2.3.6 循環壽命測試 99 4.2.4 LSP/AC(1:2.0)之鋰離子混合式電容器設計 103 4.2.4.1 恆電流充、放電分析 103 4.2.4.2 正、負極放電特性分析 105 4.2.4.3 比電量分析 108 4.2.4.4 功率損失分析 109 4.2.4.5 放電特性分析 110 4.2.4.6 循環壽命測試 112 4.2.5 不同重量比例之鋰離子混合式電容器比較 116 4.2.5.1 恆電流充、放電分析 116 4.2.5.2 正、負極放電特性分析 118 4.2.5.3 比電量分析 120 4.2.5.4 功率損失分析 121 4.2.5.5 放電特性分析 122 4.2.5.6 循環壽命測試 123 4.2.6 不同鋰化程序之鋰離子混合式電容器比較 125 4.2.6.1 恆電流充、放電分析 125 4.2.6.2 正、負極放電特性分析 126 4.2.6.3 比電量分析 127 4.2.6.4 放電特性分析 129 4.2.6.5 功率損失分析 130 4.2.6.6 循環壽命測試 131 4.2.6.7 電化學交流阻抗分析 133 第五章 結論 135 參考文獻 137 附錄 142

[1] A. K. Shukla, A. Banerjee, M. K. Ravikumar, A. Jalajakshi, “Electrochemical capacitors: Technical challenges and prognosis for future markets”, Electrochimica Acta, vol. 84, pp. 165-173 (2012)
[2] R. Kotz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, vol. 45, pp. 2483-2498 (2000)
[3] M. Winter, R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?”, Chemical Reviews, vol. 104, pp. 4245-4269 (2004)
[4] A. Burke, “Ultracapacitors: why, how, and where is the technology”, Journal of Power Sources, vol. 91, pp. 37-50 (2000)
[5] P. Sharma, T. S. Bhatti, “A review on electrochemical double-layer capacitors”, Energy Conversion and Management, vol. 51, pp. 2901-2912 (2010)
[6] E. Frackowiak, F. Beguin, “Carbon materials for the electrochemical storae of energy in capacitors”, Carbon, vol. 39, pp. 937-950 (2001)
[7] G. Wang, L. Zhang, J. Zhang, “A review of electrode materials for electrochemical supercapacitors”, Chemical Society Reviews, vol. 41, pp. 797-828 (2012)
[8] J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthium oxide as an electrode material for electrochemical capacitors”, Journal of The Electrochemical Society, vol. 142, pp. 2699-2703 (1995)
[9] K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, “Symmetric redox supercapacitor with conducting polyaniline electrodes”, Journal of Power Sources, vol. 103, pp. 305-309 (2002)
[10] A. Clemente, S. Panero, E. Spila, B. Scrosati, “Solid-state, polymer-based, redox capacitors”, Solid State Ionics, vol. 85,pp. 273-277 (1996)
[11] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, pp. 613-620 (1999)
[12] A. Burke, “R&D considerations for the performance and application of electrochemical capacitors”, Electrochimica Acta, vol. 53, pp. 1083-1091 (2007)
[13] P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors”, Nature materials, vol. 7, pp. 845-854 (2008)
[14] D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, Journal of Power Sources, vol. 74, pp. 99-107 (1998)
[15] J. B. Goodenough, H. Y-P. Hong, J. A. Kafalas, “Fast Na+-ion transport in skeleton structures”, Materials Research Bulletin, vol. 11, pp. 203-220 (1976)
[16] K. Arbi, A. Kuhn, J. Sanz, F. Garcia-Alvarado, “Characterization of lithium insertion into NASICON-type Li1-xTi2-xAlx(PO4)3 and its electrochemical behavior, Journal of The Electrochemical Society, vol. 157, pp. A654-A659 (2010)
[17] G. X. Wang, D. H. Bradhurst, S. X. Dou, H. K. Liu, “LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials”, Journal of Power Sources, vol. 124,pp. 231-236 (2003)
[18] Z. B. Xiao, M. Y. Ma, X. M. Wu, Z. Q. He, S. Chen, “Thin-film lithium-ion battery derived from Li1.3Al0.3Ti1.7(PO4)3 sintered pellet”, Transactions of Nonferrous Metals Society of China, vol. 16, pp. 281-285 (2006)
[19] C. R. Mariappan, C. Galven, M-P. Crosnier-Lopez, F. L. Berre, O. Bohnke, “Synthesis of nanotructured LiTi2(PO4)3 powder by a Pechini-type polymerizable complex method”, Journal of Solid State Chemistry, vol. 179, pp. 450-456 (2006)
[20] M. A. Subramanian, R. Subramanian, A. Clearfield, “Lithium ion conductors in the system AB(IV)2(PO4)3 (B= Ti, Zr and Hf)”, Solid State Ionics, vol. 18&19, pp. 562-569 (1986)
[21] Z. X. Lin, H. J. Yu, S. C. Li, S. B. Tian, “Lithium ion conductors based on LiTi2P3O12 compound, Solid State Ionics, vol. 31, pp. 91-94 (1988)
[22] A. Martinez-Juarez, C. Pecharroman, J. E. Iglesias, J. M. Rojo, “Relationship between acticated energy and bottleneck Size for Li+ ion conduction in NASICON materials of composition LiMM'(PO4)3; M, M'= Ge, Ti, Sn, Hf”, The Journal of Physical Chemistry B, vol. 102, pp. 372-375 (1998)
[23] M. Manickam, K. Minato, M. Takata, “Lithium insertion into NASICON frameworks effect of trivalent cation on the niobium redox couple in various transition metal phosphates, Journal of The Electrochemical Society, vol. 150, pp. A1085-A1089 (2003)
[24] J. Kuwano, N. Sato, M. Kato, K. Takano, “Ionic conductivity of LiM2(PO4)3 (M= Ti, Zr, Hf) and related compositions”, Solid State Ionics, vol. 70/71, pp. 332-336 (1994)
[25] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Y. Adachi, “Ionic conductivity of solid electrolytes based on lithium titanium phosphate”, Journal of The Electrochemical Society, vol. 137, pp. 1023-1027 (1990)
[26] J. Y. Luo, Y. Y. Xia, “Aqueous lithium-ion battery LiTi2(PO4)3/ LiMn2O4 with high power and energy densities as well as superior cycling stability”, Advanced Functional Materials, vol. 17, pp. 3877-3884 (2007)
[27] V. Aravindan, W. Chuiling, M. V. Reddy, G. V. Subba Rao, B. V. R. Chodari, S. Madhavi, “Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors”, Physical Chemistry Chemical Physics, vol. 14, pp. 5808-5814 (2012)
[28] S. Patoux, C. Masquelier, “Lithium insertion into titanium phosphates, silicates, and sulfates”, Chemistry of Materials, vol. 14, pp. 5057-5068 (2002)
[29] H. S. Kim, H. S. Ahnn, J. H. Lee, Y. K. Sun, C. S. Yoon, “Electrochemical properties of sol-gel prepared Li2ZrxTi1-x(PO4)3 electrodes for lithium secondary batteries”, Journal of The Electrochemical Society, vol. 158, pp. A396-A399 (2011)
[30] A. R. Kamali, D. J. Fray, “Tin-based materials as advanced anode materials for lithium ion batteries: A review”, Reviews on Advanced materials science, vol.27, pp.14-24 (2011)
[31] M. N. Obrovac, L. Christensen, “Structural changes in silicon anodes during lithium insertion/extraction”, Electrochemical and Solid-State Letters, vol.7, pp. A93-A96 (2004)
[32] M. J. Lindsay, G. X. Wang, H. K. Liu, “Al-based anode materials for Li-ion batteries”, Journal of Power Sources, vol. 119-121, pp. 84-87 (2003)
[33] C. K. Chan, X. F. Zhang, Y. Cui, “High capacity Li ion battery anodes using Ge nanowires”, Nano Letters, vol. 8, pp. 307-309 (2008)
[34] R. A. Huggins, “Lithium alloy negative electrodes”, Journal of Power Sources, vol. 81-82, pp. 13-19 (1999)
[35] L. Y. Beaulieu, S. D. Beattie, T. D. Hatchard, J. R. Dahn, “The electrochemical reation of lithium with tin studied by In Situ AFM”, Journal of The Electrochemical Society, vol. 150, pp. A419-A424 (2003)
[36] M. Behm, John T.S. Irvine, “Influence of structure and composition upon performance of tin phosphate based negative electrodes for lithium batteries”, Electrochimica Acta, vol. 47, pp. 1727-1738 (2002)
[37] C. M. Burba, R. Frech, “Electrochemical, spectroscopic, and thermal investigations of LiSn2(PO4)3 and Sn3(PO4)3 anodes during the first discharge”, Journal of The Electrochemical Society, vol. 152, pp. A1233-A1240 (2005)
[38] W. J. Cui, J. Yi, L. Chen, C. X. Wang, Y. Y. Xia, “Synthesis and electrochemical characteristics of NASICON-structured LiSn2(PO4)3 anode material for lithium-ion batteries”, Journal of Power Sources, vol. 217, pp. 77-84 (2012)
[39] C. M. Burba, R. Frech, A. Seidel, L. Haggstrom, A. Nyten, John O. Thomas, “Detecting unalloyed tin in LiSn2(PO4)3-based anodes with Mossbauer spectroscopy”, Journal of Solid State Electrochemistry, vol. 13, pp. 1267-1272 (2009)
[40] M. Dahbi, F. Ghamouss, T. V. Francois, D. Lemordant, M. Anouti, “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage”, Journal of Power Sources, vol. 196, pp. 9743-9750 (2011)
[41] Z. Chen, W. Q. Lu, J. Liu, K. Amine, “LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries”, Electrochimica Acta, vol. 51, pp. 3322-3326 (2006)
[42] S. T. Myung, Y. Hitoshi, Y. K. Sun, “Electrochemical behavior and passivation of current collectors in lithium-ion batteries”, Journal of Materials Chemistry, vol. 21, pp. 9891-9911 (2011)
[43] S. Brunauer, P. H. Emmett, E.Teller, “Adsorption of gases in multimolecular layers”, Journal of the American Chemical Society, vol. 60, pp. 309-319 (1938)
[44] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, International Union of Pure and Applied Chemistry, vol. 57, pp. 603-619 (1985)
[45] J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. Ramsay, K. S. W. Sing, K. K. Unger, “Recommendations for the characterization of porous solids”, International Union of Pure and Applied Chemistry, vol. 66, pp. 1739-1758 (1994)
[46] E. P. Barrett, L. G. Joyner, P. P. Halenda, “The determination of pore volume and area distributions in porous substances. i. computations from nitrogen isotherms”, Journal of the American Chemical Society, vol. 73, pp. 373-380 (1951)
[47] A. J. Smith, J. C. Burns, S. Trussler, J. R. Dahn, “Precision measurements of the coulombic efficiency of lithium-ion batteries and of electrode materials for lithium-ion batteries”, Journal of The Electrochemical Society, vol. 157, pp. A196-A202 (2010)

QR CODE