簡易檢索 / 詳目顯示

研究生: 劉盛忠
Sheng-zhong Liu
論文名稱: 包覆順鉑藥物之聚乳酸-甘醇酸次微米級粒子的製備及其對卵巢癌細胞株的標靶化療評估
Synthesis and evaluation of CD44 antibody-targeting cisplatin encapsulated PLGA submicron particles for therapy of ovarian cancer cell line
指導教授: 白孟宜
Meng-yi Bai
口試委員: 洪伯達
Po-da Hong
葉明功
Ming-kung Yeh
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 聚乳酸-甘醇酸電噴霧順鉑
外文關鍵詞: PLGA, electrospray, cisplatin
相關次數: 點閱:213下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以聚乳酸-甘醇酸共聚物(poly(lactide-co-glycolide) acid, PLGA)為包覆基材,利用電噴霧 (electrospray)技術製備出包覆癌症化療藥物順鉑(cisplatin)的載體粒子,同時利用共價鍵結法(縮合反應)或混摻合法兩種方式來修飾載體粒子表面使其帶有馬來醯亞胺-聚乙二醇-胺(maleimide-poly(ethylene glycol)-amine),提供後續表面抗體嫁接的平台。經實驗證實,我們發現傳統生物嫁接法存在許多弊病,如maleimide在鹼性條件下容易水解產生順丁烯二酸(maleic acid),進而無法嫁接抗體於其上,但我們成功的利用混摻合法並經由電噴霧技術製備出具有標靶能力之次微米級藥物載體粒子,其平均粒徑為525±99 nm,CD44抗體成功嫁接率約為12-15%。In vitro藥物釋放試驗顯示,cisplatin encapsulated PEG/PLGA粒子其中因摻合有mal-PEG-NH2一親水性物質,其累積釋放百分比在72小時即可達100%。我們最後以CD44受器過量表徵的卵巢癌細胞株(CP70及SKOV3)進行此一次微米藥物載體粒子的體外癌症細胞阻殺實驗,證實藥物濃度於最低濃度1.25 μM時仍能比現今癌症化療藥物cisplatin大部分以free form劑型的給藥方法提高約一成的療效,顯現更佳的細胞阻殺效果,其可能原因為此載體粒子受受體介導的內吞作用(receptor-mediated endocytosis)影響,能更有效的將藥物直接遞送至細胞內,進而阻斷癌症細胞的增殖。


    In this research, we used electrospray system synthesized poly(lactide-co-glycolide) acid cicplatin encapsulated submicron drug carriers, and conjugated with traditional bioconjugation method or directly mixed with maleimide-poly(ethylene glycol)-amine, in order to modify the surface of these drug carriers, for the application of further antibody conjugation.
    As a result, we found out that there are inefficiencies in the traditional bioconjugation method, which for example include dehydrogenation of maleimide to maleic acid, and ends up with unefficient antibody conjugating. In contrast, submicron particles prepared by electrospray containing blended maleimide showed efficient antibody conjugation, and active targeting property toward CD44 antigen, the average diameter of drug carriers prepared are 525±99 nm, and the conjugation rate is 12-15%. According to the In-vitro release profile, cisplatin encapsulated PEG/PLGA can reach 100% release in 72 hours because of hydrophilic mal-PEG-NH2 contained.
    Finally, we used CD44 over expressed ovarian cancer cell line, CP70 and SKOV3 to do the In-vitro cancer inhibition test. The results came to 10 % more efficient that free form of cisplatin solution, the possible mechanism is receptor-mediated endocytosis, which promises better transfection efficiency.

    第一章 緒論 1 1-1巢癌與抗癌藥物-cisplatin 2 1-1-1卵巢癌 2 1-1-2抗癌藥物-cisplatin 4 1-2癌組織標靶治療(tumor targeting therapy) 6 1-2-1被動標靶(passiva tumor targeting) 6 1-2-2主動標靶(active tumor targeting) 7 1-3生醫材料 8 1-3-1生物可分解性高分子 9 1-3-2乳酸與甘醇酸共聚合物-PLGA性質 11 1-4奈米科技 11 1-4-1奈米材料之特性 12 1-4-2奈米技術在藥物上的應用 12 1-5電噴霧 15 1-5-1電噴霧法製備粒子的原理與現象 16 1-5-2電噴霧法參數對粒子的影響 20 第二章 研究動機與目的 22 第三章 材料及方法 25 3-1實驗藥品與儀器 26 3-1-1實驗藥品 26 3-1-2 實驗儀器 27 3-2細胞株 28 3-2-1細胞種類 28 3-2-1-1細胞培養 28 3-2-1-2細胞計數 28 3-2-2細胞受器分析 29 3-2-2-1 定性分析 29 3-2-2-2 定量分析 29 3-3 兩性團聯共聚物 mal-PEG-PLGA 的合成 30 3-3-1實驗流程圖: 30 3-3-2利用化學嫁接法製備兩性團聯共聚物 mal-PEG-PLGA 31 3-4 利用摻合法製備mal-PEG-NH2摻合於PLGA粒子 32 3-4-1實驗流程: 32 3-4-2次微米粒子製備 33 3-4-3靶向性次微米粒子製備 34 3-5產物之結構鑑定與分析-FTIR與NMR 35 3-5-1 FTIR分析 35 3-5-2 NMR分析 35 3-6顆粒型態與粒徑大小分析-SEM與FESEM 36 3-7藥物包覆量測定-ELISA reader與HPLC 36 3-8藥物釋放分析-ELISA reader與HPLC 37 3-9靶向性粒子表面抗體分析-Bradford Assay 37 3-10細胞毒性測試-MTS分析 39 第四章 結果與討論 41 4-1產物之結構圖譜鑑定與分析 42 4-1-1化學嫁接法:兩性團聯共聚物 mal-PEG-PLGA結構鑑定 42 4-1-1-1 FTIR 42 4-1-1-2 1H-NMR 42 4-2-2物理摻合法:兩性共聚物成分鑑定 43 4-2-2-1 FTIR 43 4-2-2-2 1H-NMR 43 4-2 顆粒型態與粒徑大小 44 4-3藥物包覆量測定 45 4-4藥物釋放分析 46 4-5靶向性顆粒表面抗體分析 47 4-6細胞表面受器分析 47 4-7細胞毒性測試 48 第五章 結論 50 第六章 未來展望 52 第七章 參考文獻 54 附錄 88

    [1] A. Jemal, R. Siegel, E. Ward, T. Murray, C. Smigal, and M. Thue, "Cancer Statistics," CA A Cancer Journal for Clinicians, vol. 56, pp. 106-130, 2006.
    [2] H. Y. Su, H. C. Lai, Y. W. Lin, Y. C. Chou, C. Y. Liu, and M. H. Yu, "An epigenetic marker panel for screening and prognostic prediction of ovarian cancer," International Journal of Cancer, vol. 124, pp. 387-393, Jan 15 2009.
    [3] C. H. Holschneider and J. S. Berek, "Ovarian cancer: Epidemiology, biology, and prognostic factors," Seminars in Surgical Oncology, vol. 19, pp. 3-10, Jul-Aug 2000.
    [4] U. Menon, "Ovarian cancer: Challenges of early detection," Nature Clinical Practice Oncology, vol. 4, pp. 498-499, Sep 2007.
    [5] N. Auersperg, A. S. T. Wong, K. C. Choi, S. K. Kang, and P. C. K. Leung, "Ovarian surface epithelium: Biology, endocrinology, and pathology," Endocrine Reviews, vol. 22, pp. 255-288, Apr 2001.
    [6] G. N. Armaiz-Pena, L. S. Mangala, W. A. Spannuth, Y. G. Lin, N. B. Jennings, A. M. Nick, R. R. Langley, R. Schmandt, S. K. Lutgendorf, S. W. Cole, and A. K. Sood, "Estrous cycle modulates ovarian carcinoma growth," Clin Cancer Res, vol. 15, pp. 2971-8, May 1 2009.
    [7] B. Zhou, Q. Sun, R. Cong, H. Gu, N. Tang, L. Yang, and B. Wang, "Hormone replacement therapy and ovarian cancer risk: a meta-analysis," Gynecol Oncol, vol. 108, pp. 641-51, Mar 2008.
    [8] B. A. Goff, L. Mandel, H. G. Muntz, and C. H. Melancon, "Ovarian carcinoma diagnosis," Cancer, vol. 89, pp. 2068-75, Nov 15 2000.
    [9] E. R. Jamieson and S. J. Lippard, "Structure, Recognition, and Processing of Cisplatin-DNA Adducts," Chem Rev, vol. 99, pp. 2467-98, Sep 8 1999.
    [10] B. Desoize and C. Madoulet, "Particular aspects of platinum compounds used at present in cancer treatment," Critical Reviews in Oncology Hematology, vol. 42, pp. 317-325, Jun 2002.
    [11] D. Wang and S. J. Lippard, "Cellular processing of platinum anticancer drugs," Nature Reviews Drug Discovery, vol. 4, pp. 307-320, Apr 2005.
    [12] Y. P. Ho, S. C. Au-Yeung, and K. K. To, "Platinum-based anticancer agents: innovative design strategies and biological perspectives," Med Res Rev, vol. 23, pp. 633-55, Sep 2003.
    [13] M. Verschraagen, K. van der Born, T. H. U. Zwiers, and W. J. F. van der Vijgh, "Simultaneous determination of intact cisplatin and its metabolite monohydrated cisplatin in human plasma," Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, vol. 772, pp. 273-281, Jun 5 2002.
    [14] E. Wong and C. M. Giandomenico, "Current status of platinum-based antitumor drugs," Chem Rev, vol. 99, pp. 2451-2466, Sep 1999.
    [15] K. Ulbrich and V. Subr, "Polymeric anticancer drugs with pH-controlled activation," Adv Drug Deliv Rev, vol. 56, pp. 1023-50, Apr 23 2004.
    [16] O. Hiroaki, Y. Masaki, H. Toshiro, I. Yayoi, O. Yasuaki,and K. Shigeru " Drug delivery using biodegradable microspheres," Journal of Controlled Release, vol. 28, pp. 121-129, Jan 28 1994.
    [17] A. K. Pannier and L. D. Shea, "Controlled release systems for DNA delivery," Mol Ther, vol. 10, pp. 19-26, Jul 2004.
    [18] M. D. Shau, S. J. Tseng, T. F. Yang, J. Y. Cherng, and W. K. Chin, "Effect of molecular weight on the transfection efficiency of novel polyurethane as a biodegradable gene vector," Journal of Biomedical Materials Research Part A, vol. 77A, pp. 736-746, Jun 15 2006.
    [19] D.H. Lewis, Controlled Release of Bioactive Agents from Lactide / Glycolide polymers. In: M. Chain., R. Langer, Biodegradable polymers as Drug Delivery Systems, Marcol Dekker, Inc., New York, 1990, 1-45
    [20] M. Chacon, J. Molpeceres, L. Berges, M. Guzman, and M. R. Aberturas, "Stability and freeze-drying of cyclosporine loaded poly(D,L lactide-glycolide) carriers," European Journal of Pharmaceutical Sciences, vol. 8, pp. 99-107, May 1999.
    [21] M. Ramchandani, M. Pankaskie, and D. Robinson, "The influence of manufacturing procedure on the degradation of poly(lactide-co-glycolide) 85:15 and 50:50 implants," Journal of Controlled Release, vol. 43, pp. 161-173, Jan 18 1997.
    [22] R. Di Toro, V. Betti, and S. Spampinato, "Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers," European Journal of Pharmaceutical Sciences, vol. 21, pp. 161-9, Feb 2004.
    [23] M. Y. Bai and H. C. Yang, "Fabrication of novel niclosamide-suspension using an electrospray system to improve its therapeutic effects in ovarian cancer cells in vitro," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 419, pp. 248-256, Feb 20 2013.
    [24] S. K. Sahoo and V. Labhasetwar, "Nanotech approaches to drug delivery and imaging," Drug Discov Today, vol. 8, pp. 1112-20, Dec 15 2003.
    [25] J. Panyam and V. Labhasetwar, "Biodegradable nanoparticles for drug and gene delivery to cells and tissue," Adv Drug Deliv Rev, vol. 55, pp. 329-47, Feb 24 2003.
    [26] M. Tobio, R. Gref, A. Sanchez, R. Langer, and M. J. Alonso, "Stealth PLA-PEG nanoparticles as protein carriers for nasal administration," Pharmaceutical Research, vol. 15, pp. 270-275, Feb 1998.
    [27] S. Faraasen, J. Voros, G. Csucs, M. Textor, H. P. Merkle, and E. Walter, "Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate," Pharm Res, vol. 20, pp. 237-46, Feb 2003.
    [28] M. Cloupeau and B. Prunet-Foch, “Electrohydrodynamic Spraying Functioning Modes: a Critical Review”, J. Aerosol Sci. vol. 25, pp.1021, 2010.
    [29] M.-Y. Bai and H.-C. Yang, "Fabrication of novel niclosamide-suspension using an electrospray system to improve its therapeutic effects in ovarian cancer cells in vitro," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 419, pp. 248-256, 2013.
    [30] X. P. Chen, L. B. Jia, X. Z. Yin, J. S. Cheng, and J. Lu, "Spraying modes in coaxial jet electrospray with outer driving liquid," Physics of Fluids, vol. 17, Mar 2005.
    [31] W. Franklins Myth, Trends in analytical chemistry, pp. 335 (1999)
    [32] S. L. Kaufman, "Electrospray diagnostics performed by using sucrose and proteins in the gas-phase electrophoretic mobility molecular analyzer (GEMMA)," Analytica Chimica Acta, vol. 406, pp. 3-10, Feb 1 2000.
    [33] R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijnissen, and B. Scarlett, "Jet break-up in electrohydrodynamic atomization in the cone-jet mode," Journal of Aerosol Science, vol. 31, pp. 65-95, Jan 2000.
    [34] P. Intra and N. Tippayawong, "Progress in unipolar corona discharger designs for airborne particle charging: A literature review," Journal of Electrostatics, vol. 67, pp. 605-615, 2009.
    [35] W. D. Marra, M. V. Rodrigues, R. G. A. Miranda, M. A. S. Barrozo, and J. R. Coury, "The effect of the generation and handling in the acquired electrostatic charge in airborne particles," Powder Technology, vol. 191, pp. 299-308, Apr 24 2009.
    [36] A. Jaworek and A. Krupa, "Classification of the modes of EHD spraying," Journal of Aerosol Science, vol. 30, pp. 873-893, Aug 1999.
    [37] Cloupeau and B. Prunet-Foch, J. Electrostatics, pp. 135 (1989)
    [38] P. A. Hartman, D. J. Brunner, D.M.A. Camelot, J. C. M. Marjnissen, and B. Scarlett, J. Aerosol Sci., pp. 31 (2000)
    [39] T. K. Burayev and I. P. Vereshchagin, Fluid Mech., Sov. Res., pp. 56 (1972)
    [40] Y. H. Lee, F. Mei, M. Y. Bai, S. Zhao, and D. R. Chen, "Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray," Journal of Controlled Release, vol. 145, pp. 58-65, Jul 1 2010.
    [41] T. Hara, S. Iriyama, K. Makino, H. Terada, and M. Ohya, "Mathematical description of drug movement into tumor with EPR effect and estimation of its configuration for DDS," Colloids Surf B Biointerfaces, vol. 75, pp. 42-6, Jan 1 2010.
    [42] M. D. Curley, L. A. Garrett, J. O. Schorge, R. Foster, and B. R. Rueda, "Evidence for cancer stem cells contributing to the pathogenesis of ovarian cancer," Front Biosci, vol. 16, pp. 368-92, 2011.
    [43] H. Y. Su, H. C. Lai, Y. W. Lin, C. Y. Liu, C. K. Chen, Y. C. Chou, S. P. Lin, W. C. Lin, H. Y. Lee, and M. H. Yu, "Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway," Int J Cancer, vol. 127, pp. 555-67, Aug 1 2010.
    [44] J. Su, X. H. Xu, Q. Huang, M. Q. Lu, D. J. Li, F. Xue, F. Yi, J. H. Ren, and Y. P. Wu, "Identification of cancer stem-like CD44+ cells in human nasopharyngeal carcinoma cell line," Arch Med Res, vol. 42, pp. 15-21, Jan 2011.
    [45] H. S. Qhattal and X. Liu, "Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes," Mol Pharm, vol. 8, pp. 1233-46, Aug 1 2011.
    [46] G. P. Luo, X. J. Yu, C. Jin, F. Yang, D. L. Fu, J. Long, J. Xu, C. Y. Zhan, and W. Y. Lu, "LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors," International Journal of Pharmaceutics, vol. 385, pp. 150-156, Jan 29 2010.
    [47] J. Cheng, B. Teply, I. Sherifi, J. Sung, G. Luther, F. Gu, E. Levynissenbaum, A. Radovicmoreno, R. Langer, and O. Farokhzad, "Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery," Biomaterials, vol. 28, pp. 869-876, 2007.
    [48] M. Y. Bai and H. C. Yang, "Fabrication of novel niclosamide-suspension using an electrospray system to improve its therapeutic effects in ovarian cancer cells in vitro," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 419, pp. 248-256, Feb 20 2013.
    [49] S. Das, Y. Skomorovska-Prokvolit, F. Z. Wang, and P. E. Pellett, "Infection-dependent nuclear localization of US17, a member of the US12 family of human cytomegalovirus-encoded seven-transmembrane proteins," J Virol, vol. 80, pp. 1191-203, Feb 2006.
    [50] G. P. Luo, X. J. Yu, C. Jin, F. Yang, D. L. Fu, J. Long, J. Xu, C. Y. Zhan, and W. Y. Lu, "LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors," International Journal of Pharmaceutics, vol. 385, pp. 150-156, Jan 29 2010.
    [51] L. J. Cruz, P. J. Tacken, R. Fokkink, B. Joosten, M. C. Stuart, F. Albericio, R. Torensma, and C. G. Figdor, "Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro," J Control Release, vol. 144, pp. 118-26, Jun 1 2010.
    [52] P. Kocbek, N. Obermajer, M. Cegnar, J. Kos, and J. Kristl, "Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody," J Control Release, vol. 120, pp. 18-26, Jul 16 2007.
    [53] Y. Yu, Z. Pang, W. Lu, Q. Yin, H. Gao, and X. Jiang, "Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery," Pharm Res, vol. 29, pp. 83-96, Jan 2012.
    [54] D. J. Bigelow and G. Inesi, "Frequency-domain fluorescence spectroscopy resolves the location of maleimide-directed spectroscopic probes within the tertiary structure of the Ca-ATPase of sarcoplasmic reticulum," Biochemistry, vol. 30, pp. 2113-25, Feb 26 1991.
    [55] D. Lin, S. Saleh, and D. C. Liebler, "Reversibility of covalent electrophile-protein adducts and chemical toxicity," Chem Res Toxicol, vol. 21, pp. 2361-9, Dec 2008.
    [56] H. Song, R. Wang, H. Xiao, H. Cai, W. Zhang, Z. Xie, Y. Huang, X. Jing, and T. Liu, "A cross-linked polymeric micellar delivery system for cisplatin(IV) complex," Eur J Pharm Biopharm, vol. 83, pp. 63-75, Jan 2013.
    [57] J. Cheng, B. A. Teply, I. Sherifi, J. Sung, G. Luther, F. X. Gu, E. Levy-Nissenbaum, A. F. Radovic-Moreno, R. Langer, and O. C. Farokhzad, "Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery," Biomaterials, vol. 28, pp. 869-76, Feb 2007.

    無法下載圖示 全文公開日期 2018/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE