簡易檢索 / 詳目顯示

研究生: 溫如意
Vania
論文名稱: 合成銅-酚酸基生物金屬有機骨架 (Cu-BioMOFs) 並探討其可能用作抗結核藥物之載體
Synthesis of Copper-Phenolic Acid-Based Biological Metal-Organic Frameworks (Cu-BioMOFs) for Possible Application as Antitubercular Drug Carrier
指導教授: 翁玉鑽
朱義旭
口試委員: 吳耀豐
朱義旭
翁玉鑽
陳燿騰
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 100
中文關鍵詞: 生物相容性-金屬-有機骨架PCA 3,4-二羥基苯甲酸3,4 二羥基氫化肉桂酸利福平藥物輸送
外文關鍵詞: biocompatible-metal-organic framework, copper, CA 3,4-dihydroxybenzoic acid, 3,4 dihydroxyhydrocinnamic acid, rifampicin, drug delivery
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機框架 (MOF) 已被廣泛應用於生物醫學。然而,由於前體材料和合成溶劑選擇不當而導致的生物不相容性問題仍然是一個需要解決的挑戰。在本研究中,在鹼調節條件下,兩種具有不同酰基鍊長度的生物活性有機連接體,即原兒茶酸 (PCA) 和二氫咖啡酸 (DHCA),被用於製備銅基生物 MOFs (BioMOFs),分別表示為 Cu-PCA 和 Cu-DHCA。粉末 X 射線衍射 (XRD)的詳細晶體分析數據顯示,Cu-PCA (C14H16O13Cu3) 在空間群 P1 中結晶為三斜晶,而 Cu-DHCA (C68H73O36Cu12) 在空間群 P422 中合成為四方晶體。使用傅里葉變換紅外 (FTIR)、掃描電子顯微鏡 (SEM)、X 射線光電子能譜 (XPS)、熱重分析 (TGA)、元素分析 (EA) 和氮氣 (N2) 吸附探討所合成的 BioMOF間的詳盡物理化學差異。 N2吸附分析顯示,使用具有較長酰基鍊長的有機接頭製備的Cu-DHCA具有擴大的孔徑;比 Cu-PCA 大 2.29 倍。 Cu-DHCA 還顯示最大利福平 (RIF) 載藥量為 559.40 mg/g,比 Cu-PCA 高 1.26 倍。在模擬生理條件的磷酸鹽緩衝鹽水溶液中重新懸浮後,RIF 和接頭釋放表現出兩相釋放動力學曲線,雙相劑量反應 (BiDoseResp) 模型可對此做很好的描述。 BioMOFs 及其負載 RIF 的類似物對大腸桿菌具有抗菌活性,並且被證明為無細胞毒性,此可經由補充後 MH-S 小鼠肺泡巨噬細胞的高活力所驗證。因此,這些 BioMOFs 經證明為一種很有潛力的 RIF 載體,通過延長有機接頭的酰基鍊長度可以增強其載藥能力。


    Metal-organic frameworks (MOFs) have been widely explored for biomedical applications. However, the issue of bio-incompatibility that comes from the improper selection of precursor materials and synthesis solvents remains a challenge that needs to be tackled. In this study, two biologically active organic linkers with different acyl chain lengths, namely protocatechuic acid (PCA) and dihydrocaffeic acid (DHCA), were used to prepare copper-based biological MOFs (BioMOFs), denoted Cu-PCA and Cu-DHCA, respectively, under base-modulated conditions. Detailed crystal analysis based on the powder X-Ray Diffraction (XRD) data demonstrated that the Cu-PCA (C14H16O13Cu3) crystalizes as triclinic in space group P1 and Cu-DHCA (C68H73O36Cu12) synthesized as a tetragonal crystal in space group P422. Comprehensive physicochemical differences between the synthesized BioMOFs were investigated using Fourier Transform Infrared (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), elemental analysis (EA), and nitrogen (N2) sorption.
    The N2 sorption analysis shows that Cu-DHCA, prepared using the organic linker with a longer acyl chain length, has an enlarged pore diameter; that is 2.29-fold greater than the Cu-PCA. The Cu-DHCA also showed maximum rifampicin (RIF) drug loading of 559.40 mg/g, which is 1.26-fold higher than Cu-PCA. Upon resuspension in a phosphate-buffered saline solution that mimics physiological condition, the RIF and linkers release exhibit two-phase release kinetic profiles, which are well described by the Biphasic Dose Response (BiDoseResp) model. BioMOFs and their RIF-loaded analog possessed antibacterial activity against Escherichia coli and were proven to be non-cytotoxic, as evidenced by the high viability of MH-S mice alveolar macrophage cells upon supplementation. Hence, these BioMOFs were demonstrated as a promising RIF carrier, with enhanced drug loading ability achievable by extending the acyl chain length of the organic linker.

    摘要 ii ABSTRACT iii ACKNOWLEDGEMENT v TABLE OF CONTENT vi LIST OF TABLES viii LIST OF FIGURES ix CHAPTER 1 1 1.1. Background 1 1.2. Goal and objectives 3 1.3. Significance of the study 3 1.4. Scope and limitation 4 CHAPTER 2 5 2.1. Metal-Organic Framework 5 2.1.1. Synthesis strategy 8 2.1.2. MOFs for biological application 14 2.1.3. Phenolic acids 16 2.1.4. Copper 18 2.2. Drug delivery system 18 2.2.1. Tuberculosis treatment 19 2.2.2. Rifampicin 19 2.2.3. Adsorption isotherm 21 2.2.4. Release kinetics models 23 CHAPTER 3 27 3.1. Materials 27 3.2. Synthesis of Cu-PCA and Cu-DHCA 28 3.3. Characterization 29 3.3.1. X-Ray Diffraction (XRD) 29 3.3.2. Nitrogen (N2) sorption analysis 29 3.3.3. Fourier Transform Infrared (FTIR) 29 3.3.4. Dynamic Light Scattering (DLS) 30 3.3.5. Field Emission-Scanning Electron Microscopy (FE-SEM) 30 3.3.6. X-Ray Photoelectron Spectroscopy (XPS) 30 3.3.7. Elemental Analysis 30 3.3.8. Inductively coupled plasma-atomic emission spectrometry (ICP-OES) 30 3.3.9. Thermogravimetric Analysis (TGA) 31 3.4. RIF Loading 31 3.5. RIF Release 32 3.6. Antibacterial Activity Assay 33 3.7. Cytotoxicity Assay 34 3.8. Fitting evaluation 34 CHAPTER 4 36 4.1. Synthesis of BioMOFs 36 4.2. Crystal structure solution of Cu-PCA and Cu-DHCA powder XRD 39 4.3. Characterization of fresh BioMOFs 42 4.4. Loading of RIF onto Cu-PCA and Cu-DHCA 47 4.5. Characterization of RIF@BioMOFs 52 4.6. In-vitro RIF release 53 4.7. Antibacterial activity 60 4.8. Cytotoxicity 61 4.9. Comparison with reported works 63 CHAPTER 5 67 5.1. Conclusion 67 5.2. Recommendation 68 REFERENCES 69 APPENDIX 83 A.1. Calculation RIF (mass) and release media (vol) for release system 83 A.2. HPLC operating conditions 83

    1. André, V. and S. Quaresma, Bio-inspired Metal-Organic Frameworks in the Pharmaceutical World: a brief review. Metal-Organic Frameworks, 2016.
    2. Glover, J. and E. Besley, Pore-filling contamination in metal–organic frameworks. Physical Chemistry Chemical Physics, 2018. 20(36): p. 23616-23624.
    3. Baumann, A.E., et al., Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry, 2019. 2(1): p. 1-14.
    4. Singh, N., S. Qutub, and N.M. Khashab, Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. Journal of Materials Chemistry B, 2021.
    5. Ahmadi, M., et al., An investigation of affecting factors on MOF characteristics for biomedical applications: A systematic review. Heliyon, 2021. 7(4): p. e06914.
    6. Cooper, L., et al., A biocompatible porous Mg-gallate metal–organic framework as an antioxidant carrier. Chemical communications, 2015. 51(27): p. 5848-5851.
    7. Hidalgo, T., et al., Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs. Journal of Materials Chemistry B, 2017. 5(15): p. 2813-2822.
    8. Rojas, S., T. Devic, and P. Horcajada, Metal organic frameworks based on bioactive components. Journal of Materials Chemistry B, 2017. 5(14): p. 2560-2573.
    9. Horcajada, P., et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature materials, 2010. 9(2): p. 172-178.
    10. Orellana-Tavra, C., et al., Drug delivery and controlled release from biocompatible metal–organic frameworks using mechanical amorphization. Journal of Materials Chemistry B, 2016. 4(47): p. 7697-7707.
    11. Dai, J. and R.J. Mumper, Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010. 15(10): p. 7313-7352.
    12. Kaurinovic, B. and D. Vastag, Flavonoids and phenolic acids as potential natural antioxidants, in Antioxidants. 2019, IntechOpen London, UK. p. 1-20.
    13. Kumar, N. and N. Goel, Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 2019. 24: p. e00370.
    14. Festa, R.A. and D.J. Thiele, Copper: an essential metal in biology. Current Biology, 2011. 21(21): p. R877-R883.
    15. Zoroddu, M.A., et al., The essential metals for humans: a brief overview. Journal of inorganic biochemistry, 2019. 195: p. 120-129.
    16. Global tuberculosis report 2021. Geneva: World Health Organization. 2021, Licence: CC BY-NC-SA 3.0 IGO.
    17. Dela Cruz, C.S., et al., Treatment of drug-susceptible tuberculosis. Annals of the American Thoracic Society, 2016. 13(11): p. 2060-2063.
    18. Sotgiu, G., et al., Tuberculosis treatment and drug regimens. Cold Spring Harbor perspectives in medicine, 2015. 5(5): p. a017822.
    19. Ali, A.O.A. and M.H. Prins, Patient non adherence to tuberculosis treatment in Sudan: socio demographic factors influencing non adherence to tuberculosis therapy in Khartoum State. The Pan African Medical Journal, 2016. 25.
    20. Pradipta, I.S., et al., Interventions to improve medication adherence in tuberculosis patients: a systematic review of randomized controlled studies. NPJ primary care respiratory medicine, 2020. 30(1): p. 1-10.
    21. Férey, G., Hybrid porous solids: past, present, future. Chemical Society Reviews, 2008. 37(1): p. 191-214.
    22. Pilgrim, B. and N.R. Champness, Metal-Organic Frameworks and Metal-Organic Cages–A Perspective. ChemPlusChem, 2020. 85(8).
    23. Rowsell, J.L. and O.M. Yaghi, Metal–organic frameworks: a new class of porous materials. Microporous and mesoporous materials, 2004. 73(1-2): p. 3-14.
    24. Wu, C., et al., Ruthenium complexes immobilized on an azolium based metal organic framework for highly efficient conversion of CO2 into formic acid. ChemCatChem, 2019. 11(4): p. 1256-1263.
    25. Pangestu, T., et al., The synthesis of biodiesel using copper based metal-organic framework as a catalyst. Journal of Environmental Chemical Engineering, 2019. 7(4): p. 103277.
    26. Sun, J., et al., Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. Journal of Environmental Sciences, 2019. 80: p. 197-207.
    27. Azhar, B., et al., Aqueous synthesis of highly adsorptive copper–gallic acid metal–organic framework. Scientific Reports, 2020. 10(1): p. 1-12.
    28. Santoso, S.P., et al., Metal–Organic Frameworks and Their Hybrid Composites for Adsorption of Volatile Organic Compounds. Applications of Metal–Organic Frameworks and Their Derived Materials, 2020: p. 313-355.
    29. Li, H., et al., Recent advances in gas storage and separation using metal–organic frameworks. Materials Today, 2018. 21(2): p. 108-121.
    30. Huelsenbeck, L., et al., Modulating and orienting an anisotropic Zn-based metal organic framework for selective CH4/CO2 gas separation. Crystals, 2019. 9(1): p. 20.
    31. Yang, J. and Y.W. Yang, Metal–organic frameworks for biomedical applications. Small, 2020. 16(10): p. 1906846.
    32. Cavka, J.H., et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
    33. Eddaoudi, M., et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science, 2002. 295(5554): p. 469-472.
    34. He, Y.-C., et al., Tuning the void volume in a series of isomorphic porous metal–organic frameworks by varying the solvent size and length of organic ligands. CrystEngComm, 2014. 16(24): p. 5450-5457.
    35. Batten, S.R., et al., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, 2013. 85(8): p. 1715-1724.
    36. Zhong, M., et al., Recent Progress of Nanoscale Metal‐Organic Frameworks in Synthesis and Battery Applications. Advanced Science, 2021. 8(4): p. 2001980.
    37. Raptopoulou, C.P., Metal-organic frameworks: Synthetic methods and potential applications. Materials, 2021. 14(2): p. 310.
    38. Han, Y., H. Yang, and X. Guo, Synthesis methods and crystallization of MOFs, in Synthesis Methods and Crystallization. 2020, IntechOpen.
    39. Usman, K.A.S., et al., Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Materials, 2020. 12(1): p. 1-18.
    40. Venna, S.R., J.B. Jasinski, and M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. Journal of the American Chemical Society, 2010. 132(51): p. 18030-18033.
    41. Lee, Y.-R., J. Kim, and W.-S. Ahn, Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 2013. 30(9): p. 1667-1680.
    42. Dey, C., et al., Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014. 70(1): p. 3-10.
    43. Rubio-Martinez, M., et al., New synthetic routes towards MOF production at scale. Chemical Society Reviews, 2017. 46(11): p. 3453-3480.
    44. Butova, V.V.e., et al., Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016. 85(3): p. 280.
    45. Demazeau, G., Solvothermal and hydrothermal processes: the main physico-chemical factors involved and new trends. Research on Chemical Intermediates, 2011. 37(2): p. 107-123.
    46. Seetharaj, R., et al., Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian journal of chemistry, 2019. 12(3): p. 295-315.
    47. Wang, S., et al., Toward a rational design of titanium metal-organic frameworks. Matter, 2020. 2(2): p. 440-450.
    48. Liang, Y., et al., Synthesis of Metal–Organic Framework Materials by Reflux: A Faster and Greener Pathway to Achieve Super-Hydrophobicity and Photocatalytic Application. Crystal Growth & Design, 2018. 18(11): p. 6609-6616.
    49. Mueller, U., et al., Metal–organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 2006. 16(7): p. 626-636.
    50. Martinez Joaristi, A., et al., Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Crystal Growth & Design, 2012. 12(7): p. 3489-3498.
    51. Crawford, D.E. and J. Casaban, Recent developments in mechanochemical materials synthesis by extrusion. Advanced Materials, 2016. 28(27): p. 5747-5754.
    52. Bigdeli, M. and A. Morsali, Sonochemical synthesis of a nano-structured zinc (II) amidic pillar metal–organic framework. Ultrasonics sonochemistry, 2015. 27: p. 416-422.
    53. Qiu, L.-G., et al., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical communications, 2008(31): p. 3642-3644.
    54. Pujar, P., et al., High-intensity ultrasound-assisted low-temperature formulation of lanthanum zirconium oxide nanodispersion for thin-film transistors. ACS Applied Materials & Interfaces, 2020. 12(40): p. 44926-44933.
    55. Largeteau, A., et al., Microwave heating in high pressure reaction vessels. International Journal of High Pressure Research, 2001. 20(1-6): p. 281-288.
    56. Wang, X.-F., et al., Microwave-assisted solvothermal synthesis of a dynamic porous metal-carboxylate framework. Crystal Growth and Design, 2008. 8(12): p. 4559-4563.
    57. Liang, W. and D.M. D'Alessandro, Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks. Chemical Communications, 2013. 49(35): p. 3706-3708.
    58. Tonigold, M., et al., Heterogeneous Catalytic Oxidation by MFU‐1: A Cobalt (II)‐Containing Metal–Organic Framework. Angewandte Chemie International Edition, 2009. 48(41): p. 7546-7550.
    59. Dong, W., et al., Metal–organic framework MIL-53 (Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. Rsc Advances, 2015. 5(23): p. 17451-17457.
    60. De La Hoz, A., et al., Reproducibility and scalability of microwave-assisted reactions. 2011: IntechOpen.
    61. Soni, S., P.K. Bajpai, and C. Arora, A review on metal-organic framework: synthesis, properties and application. Characterization and Application of Nanomaterials, 2020. 3(2).
    62. Huang, W.-H., et al., Solvent influence on sizes of channels in three new Co (II) complexes, exhibiting an active replaceable coordinated site. Crystal growth & design, 2013. 13(1): p. 66-73.
    63. Zhou, X., et al., Solvents influence on sizes of channels in three fry topological Mn (II)-MOFs based on metal–carboxylate chains: syntheses, structures and magnetic properties. CrystEngComm, 2013. 15(40): p. 8125-8132.
    64. Yuan, F., et al., Effect of pH/metal ion on the structure of metal–organic frameworks based on novel bifunctionalized ligand 4′-carboxy-4, 2′: 6′, 4′′-terpyridine. CrystEngComm, 2013. 15(7): p. 1460-1467.
    65. Zhao, Y., et al., Large-scale synthesis of monodisperse UiO-66 crystals with tunable sizes and missing linker defects via acid/base Co-modulation. ACS applied materials & interfaces, 2017. 9(17): p. 15079-15085.
    66. Liu, Q., L.-N. Jin, and W.-Y. Sun, Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology. Chemical Communications, 2012. 48(70): p. 8814-8816.
    67. Jiang, D., et al., Polymer-assisted synthesis of nanocrystalline copper-based metal–organic framework for amine oxidation. Catalysis Communications, 2011. 12(7): p. 602-605.
    68. Cai, X., J. Lin, and M. Pang, Facile synthesis of highly uniform Fe-MIL-88B particles. Crystal Growth & Design, 2016. 16(7): p. 3565-3568.
    69. Yang, J.-M., et al., Effect of additives on morphology and size and gas adsorption of SUMOF-3 microcrystals. Microporous and Mesoporous Materials, 2016. 222: p. 27-32.
    70. Liu, Y., et al., Fe 1− x S/nitrogen and sulfur Co-doped carbon composite derived from a nanosized metal–organic framework for high-performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2019. 6(1): p. 50-56.
    71. Xiao, B., et al., Facile synthesis of hierarchical metal–organic microsheet-assembled microflowers. Materials Letters, 2015. 152: p. 139-141.
    72. Wang, F., et al., The controlled regulation of morphology and size of HKUST-1 by “coordination modulation method”. Microporous and mesoporous materials, 2013. 173: p. 181-188.
    73. Xin, C., et al., Effect of various alkaline agents on the size and morphology of nano-sized HKUST-1 for CO 2 adsorption. RSC Advances, 2015. 5(35): p. 27901-27911.
    74. Gerardin, C., et al., In situ pH probing of hydrothermal solutions by NMR. Chemistry of materials, 1999. 11(5): p. 1285-1292.
    75. Kojima, T., W. Choi, and M. Kawano, Single-crystal growth of coordination networks via the gas phase and dependence of iodine encapsulation on the crystal size. Chemical Communications, 2014. 50(89): p. 13793-13796.
    76. Millange, F., et al., A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework. CrystEngComm, 2011. 13(1): p. 103-108.
    77. Van Vleet, M.J., et al., In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth. Chemical reviews, 2018. 118(7): p. 3681-3721.
    78. McKinlay, A.C., et al., BioMOFs: metal–organic frameworks for biological and medical applications. Angewandte Chemie International Edition, 2010. 49(36): p. 6260-6266.
    79. Williams, D.F., On the mechanisms of biocompatibility. Biomaterials, 2008. 29(20): p. 2941-2953.
    80. Simon, M.A., et al., Hydrothermal synthesize of HF-free MIL-100 (Fe) for isoniazid-drug delivery. Scientific reports, 2019. 9(1): p. 1-11.
    81. Sharma, T., et al. Synthesis of Iron Based Biocompatible Metal Organic Frameworks for Microencapsulation of Docetaxel. in Nano Hybrids and Composites. 2017. Trans Tech Publ.
    82. Alves, R.C., et al., Copper (II) biocompatible coordination solids as potential platforms for diclofenac delivery systems. Journal of Solid State Chemistry, 2020. 289: p. 121479.
    83. Sattar, T. and M. Athar, Hydrothermal synthesis and characterization of copper glycinate (Bio-MOF-29) and its in vitro drugs adsorption studies. Open Journal of Inorganic Chemistry, 2017. 7(02): p. 17.
    84. Soltani, S. and K. Akhbari, Cu-BTC metal–organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. JBIC Journal of Biological Inorganic Chemistry, 2021: p. 1-7.
    85. Lin, W., et al., A biocompatible metal–organic framework as a pH and temperature dual-responsive drug carrier. Dalton Transactions, 2018. 47(44): p. 15882-15887.
    86. Xing, K., et al., Dual-stimulus-triggered programmable drug release and luminescent ratiometric pH sensing from chemically stable biocompatible zinc metal–Organic framework. ACS applied materials & interfaces, 2018. 10(26): p. 22746-22756.
    87. Cai, Y., Z. Sheng, and J. Wang, A Biocompatible Zinc (II)‐based Metal‐organic Framework for pH Responsive Drug Delivery and Anti‐Lung Cancer Activity. Zeitschrift für anorganische und allgemeine Chemie, 2018. 644(16): p. 877-882.
    88. Hoop, M., et al., Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today, 2018. 11: p. 13-21.
    89. Gould, J.A., et al., A homochiral three-dimensional zinc aspartate framework that displays multiple coordination modes and geometries. Chemical communications, 2010. 46(16): p. 2793-2795.
    90. Mantion, A., et al., Metal− peptide frameworks (MPFs):“bioinspired” metal organic frameworks. Journal of the American Chemical Society, 2008. 130(8): p. 2517-2526.
    91. Martí‐Gastaldo, C., et al., Enhanced Stability in Rigid Peptide‐Based Porous Materials. Angewandte Chemie, 2012. 124(44): p. 11206-11210.
    92. Levine, D.J., et al., Olsalazine-based metal–organic frameworks as biocompatible platforms for H2 adsorption and drug delivery. Journal of the American Chemical Society, 2016. 138(32): p. 10143-10150.
    93. Miller, S.R., et al., Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chemical Communications, 2010. 46(25): p. 4526-4528.
    94. Tibbetts, I. and G.E. Kostakis, Recent bio-advances in metal-organic frameworks. Molecules, 2020. 25(6): p. 1291.
    95. Fu, J. and Y.-n. Wu, A showcase of green chemistry: Sustainable synthetic approach of zirconium‐based MOF materials. Chemistry–A European Journal, 2021.
    96. Ulery, B.D., L.S. Nair, and C.T. Laurencin, Biomedical applications of biodegradable polymers. Journal of polymer science Part B: polymer physics, 2011. 49(12): p. 832-864.
    97. Doppalapudi, S., et al., Biodegradable polymers—an overview. Polymers for Advanced Technologies, 2014. 25(5): p. 427-435.
    98. Kush, P., et al., Biodistribution and pharmacokinetic study of gemcitabine hydrochloride loaded biocompatible iron-based metal organic framework. Journal of Inorganic and Organometallic Polymers and Materials, 2019: p. 1-15.
    99. Velásquez-Hernández, M.d.J., et al., Degradation of ZIF-8 in phosphate buffered saline media. CrystEngComm, 2019. 21(31): p. 4538-4544.
    100. Alyami, M.Z., et al., Cell-type-specific CRISPR/Cas9 delivery by biomimetic metal organic frameworks. Journal of the American Chemical Society, 2020. 142(4): p. 1715-1720.
    101. Alsaiari, S.K., et al., Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy. Science Advances, 2021. 7(4): p. eabe7174.
    102. Chen, D., et al., In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal–organic frameworks nanomaterials. ACS nano, 2017. 11(4): p. 4315-4327.
    103. Wang, Y., et al., A biocompatible Zr-based metal-organic framework UiO-66-PDC as an oral drug carrier for pH-response release. Journal of Solid State Chemistry, 2021. 293: p. 121805.
    104. Sun, C.-Y., et al., Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions, 2012. 41(23): p. 6906-6909.
    105. Chen, J., et al., Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific reports, 2020. 10(1): p. 1-9.
    106. Chandrasekara, A., Phenolic acids. Encyclopedia of Food Chemistry, 2019: p. 535-545.
    107. Kakkar, S. and S. Bais, A review on protocatechuic acid and its pharmacological potential. International Scholarly Research Notices, 2014. 2014.
    108. Song, J., et al., New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacological Research, 2020: p. 105109.
    109. Chandra, I.K., et al., Solution equilibria studies of complexes of divalent metal ions with 2-aminophenol and 3, 4-dihydroxybenzoic acid. Polyhedron, 2015. 88: p. 29-39.
    110. Zavitsanos, K., K. Tampouris, and A.L. Petrou, Reaction of chromium (III) with 3, 4-dihydroxybenzoic acid: kinetics and mechanism in weak acidic aqueous solutions. Bioinorganic Chemistry and Applications, 2008. 2008.
    111. Bundjaja, V., et al., Protocatechuic acid-metal-nicotine complexation study for chelation of smoking-related poisoning. Journal of Molecular Liquids, 2020. 312: p. 113428.
    112. Galano, A. and A. Pérez-González, On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution. Theoretical Chemistry Accounts, 2012. 131(9): p. 1-13.
    113. Hatzipanayioti, D., et al., Theoretical and spectroscopic investigation of the oxidation and degradation of protocatechuic acid. Chemical physics, 2006. 325(2-3): p. 341-350.
    114. Goldstein, D.S., et al., Dihydrocaffeic acid: a common contaminant in the liquid chromatographic-electrochemical measurement of plasma catecholamines in man. Journal of Chromatography B: Biomedical Sciences and Applications, 1984. 311: p. 148-153.
    115. Moon, J.-H. and J. Terao, Antioxidant activity of caffeic acid and dihydrocaffeic acid in lard and human low-density lipoprotein. Journal of Agricultural and Food Chemistry, 1998. 46(12): p. 5062-5065.
    116. Silva, F.A., et al., Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. Journal of Agricultural and Food Chemistry, 2000. 48(6): p. 2122-2126.
    117. Conry, R.R., Copper: Inorganic & Coordination Chemistry. Based in Part on the Article Copper: Inorganic & Coordination Chemistry by Rebecca R. Conry & Kenneth D. Karlin Which Appeared in the Encyclopedia of Inorganic Chemistry. Encyclopedia of inorganic chemistry, 2006: p. 2309.
    118. Puchkova, L.V., et al., Copper metabolism of newborns is adapted to milk ceruloplasmin as a nutritive source of copper: Overview of the current data. Nutrients, 2018. 10(11): p. 1591.
    119. Da Silva, J.F. and R.J.P. Williams, The biological chemistry of the elements: the inorganic chemistry of life. 2001: Oxford University Press.
    120. Maret, W., The metals in the biological periodic system of the elements: concepts and conjectures. International journal of molecular sciences, 2016. 17(1): p. 66.
    121. Rekha, M. and C.P. Sharma, Nanoparticle mediated oral delivery of peptides and proteins: Challenges and perspectives, in Peptide and Protein Delivery. 2011, Elsevier. p. 165-194.
    122. Vega-Vásquez, P., N.S. Mosier, and J. Irudayaraj, Nanoscale drug delivery systems: From medicine to agriculture. Frontiers in bioengineering and biotechnology, 2020. 8: p. 79.
    123. Sastry, S.V., J.R. Nyshadham, and J.A. Fix, Recent technological advances in oral drug delivery–a review. Pharmaceutical science & technology today, 2000. 3(4): p. 138-145.
    124. Alqahtani, M.S., Advances in oral drug delivery. Frontiers in Pharmacology, 2021. 12: p. 62.
    125. Organization, W.H., What is DOTS?: a guide to understanding the WHO-recommended TB control strategy known as DOTS. 1999, World Health Organization.
    126. Organization, W.H. and S.T. Initiative, Treatment of tuberculosis: guidelines. 2010: World Health Organization.
    127. Gabriel, A.P. and C.P. Mercado, Evaluation of task shifting in community-based DOTS program as an effective control strategy for tuberculosis. TheScientificWorldJOURNAL, 2011. 11: p. 2178-2186.
    128. Horsburgh Jr, C.R., C.E. Barry III, and C. Lange, Treatment of tuberculosis. New England Journal of Medicine, 2015. 373(22): p. 2149-2160.
    129. Bass Jr, J.B., et al., Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention. American journal of respiratory and critical care medicine, 1994. 149(5): p. 1359-1374.
    130. Jamil, K. Management of multidrug-resistant tuberculosis in human immunodeficiency virus patients. in IOP Conference Series: Earth and Environmental Science. 2018. IOP Publishing.
    131. Oliveira, O., et al., Evaluation of drug-resistant tuberculosis treatment outcome in Portugal, 2000–2016. PloS one, 2021. 16(4): p. e0250028.
    132. Scholar, E.M., E.M. Scholar, and W.B. Pratt, The antimicrobial drugs. 2000: Oxford University Press, USA.
    133. Holstege, C.P., Rifampin. 2014.
    134. Van Ingen, J., et al., Why do we use 600 mg of rifampicin in tuberculosis treatment? Clinical Infectious Diseases, 2011. 52(9): p. e194-e199.
    135. Boeree, M.J., et al., A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. American journal of respiratory and critical care medicine, 2015. 191(9): p. 1058-1065.
    136. Azis, L., E.C. Jones-López, and J.J. Ellner, HIV-associated tuberculosis, in Sande's HIV/AIDS Medicine: Medical Management of AIDS 2013: Second Edition. 2012, Elsevier Inc. p. 325-347.
    137. Wallace Jr, R.J., J.V. Philley, and D.E. Griffith, Antimycobacterial agents, in Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 2015, Elsevier. p. 463-478. e3.
    138. Bekraki, A.I., Liposomes-and niosomes-based drug delivery systems for tuberculosis treatment, in Nanotechnology Based Approaches for Tuberculosis Treatment. 2020, Elsevier. p. 107-122.
    139. Yalkowsky, S. and Y. He, An extensive compilation of aqueous solubility data for organic compounds extracted from the AQUASOL database. Handbook of Aqueous Solubility Data, 2003: p. 377.
    140. Ermondi, G., et al., Managing Experimental 3D Structures in the Beyond-Rule-of-5 Chemical Space: The Case of Rifampicin. 2021.
    141. Nitti, V., et al., Rifampicin blood serum levels and half-life during prolonged administration in tuberculous patients. Chemotherapy, 1972. 17(2): p. 121-129.
    142. Das, B., et al., Insight into adsorption equilibrium, kinetics and thermodynamics of lead onto alluvial soil. International Journal of Environmental Science and Technology, 2014. 11(4): p. 1101-1114.
    143. Ray, S. and G. Das, Process Equipment and Plant Design. 2020, Elsevier.
    144. León, G., et al., Activated Olive Stones as a Low-Cost and Environmentally Friendly Adsorbent for Removing Cephalosporin C from Aqueous Solutions. International Journal of Environmental Research and Public Health, 2021. 18(9): p. 4489.
    145. Liu, L., et al., Application of nanotechnology in the removal of heavy metal from water, in Nanomaterials for the removal of pollutants and resource reutilization. 2019, Elsevier. p. 83-147.
    146. Sahu, O. and N. Singh, Significance of bioadsorption process on textile industry wastewater, in The impact and prospects of green chemistry for textile technology. 2019, Elsevier. p. 367-416.
    147. Langmuir, I., The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 1916. 38(11): p. 2221-2295.
    148. Adamson, A.W. and A.P. Gast, Physical chemistry of surfaces. Vol. 150. 1967: Interscience publishers New York.
    149. Al-Ghouti, M.A. and D.A. Da'ana, Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of hazardous materials, 2020. 393: p. 122383.
    150. Ayawei, N., A.N. Ebelegi, and D. Wankasi, Modelling and interpretation of adsorption isotherms. Journal of chemistry, 2017. 2017.
    151. Freundlich, H., Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II. Transactions of the Faraday Society, 1932. 28: p. 195-201.
    152. Tseng, R.-L. and F.-C. Wu, Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. Journal of hazardous materials, 2008. 155(1-2): p. 277-287.
    153. Do, D.D., Adsorption analysis: Equilibria and kinetics (with cd containing computer MATLAB programs). Vol. 2. 1998: World Scientific.
    154. Kumar, V., Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+ 2 ions from aqueous solutions by a hybrid ion-exchanger. Arabian journal of chemistry, 2019. 12(3): p. 316-329.
    155. Siepmann, J. and N. Peppas, Mathematical modeling of controlled drug delivery. Advanced drug delivery reviews, 2001. 48(2-3).
    156. Fu, Y. and W.J. Kao, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert opinion on drug delivery, 2010. 7(4): p. 429-444.
    157. Dash, S., et al., Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm, 2010. 67(3): p. 217-223.
    158. Ritger, P.L. and N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of controlled release, 1987. 5(1): p. 23-36.
    159. Bruschi, M.L., Strategies to modify the drug release from pharmaceutical systems. 2015: Woodhead Publishing.
    160. Korsmeyer, R.W., et al., Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, 1983. 15(1): p. 25-35.
    161. Peppas, N.A. and B. Narasimhan, Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 2014. 190: p. 75-81.
    162. Costa, P. and J.M.S. Lobo, Modeling and comparison of dissolution profiles. European journal of pharmaceutical sciences, 2001. 13(2): p. 123-133.
    163. Baggi, R.B. and N.B. Kilaru, Calculation of predominant drug release mechanism using Peppas-Sahlin model, Part-I (substitution method): A linear regression approach. Asian Journal of Pharmacy and Technology, 2016. 6(4): p. 223-230.
    164. Peppas, N.A. and J.J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. International journal of pharmaceutics, 1989. 57(2): p. 169-172.
    165. Bacaër, N., Verhulst and the logistic equation (1838), in A short history of mathematical population dynamics. 2011, Springer. p. 35-39.
    166. Reséndiz-Muñoz, J., et al., Mathematical model of Boltzmann’s sigmoidal equation applicable to the set-up of the RF-magnetron co-sputtering in thin films deposition of $$\hbox {Ba} _ {{x}}\hbox {Sr} _ {1-{x}}\hbox {TiO} _ {3} $$ Ba x Sr 1-x TiO 3. Bulletin of Materials Science, 2017. 40(5): p. 1043-1047.
    167. El Aferni, A., M. Guettari, and T. Tajouri, Mathematical model of Boltzmann’s sigmoidal equation applicable to the spreading of the coronavirus (Covid-19) waves. Environmental Science and Pollution Research, 2020: p. 1-9.
    168. Heusser, K., et al., Baroreflex Curve Fitting Using a WYSIWYG Boltzmann Sigmoidal Equation. Frontiers in Neuroscience, 2021. 15.
    169. Navarro-Verdugo, A.L., et al., A modified Boltzmann sigmoidal model for the phase transition of smart gels. Soft Matter, 2011. 7(12): p. 5847-5853.
    170. Putro, J.N., et al., A study of anionic, cationic, and nonionic surfactants modified starch nanoparticles for hydrophobic drug loading and release. Journal of Molecular Liquids, 2020. 298: p. 112034.
    171. Wen, H., et al., Enzyme cum pH dual-responsive controlled release of avermectin from functional polydopamine microcapsules. Colloids and Surfaces B: Biointerfaces, 2020. 186: p. 110699.
    172. Ghosal, K., et al., Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2012. 67(2): p. 147-155.
    173. Craciun, A.-M., et al., Theoretical modeling of long-time drug release from nitrosalicyl-imine-chitosan hydrogels through multifractal logistic type laws. Computational and mathematical methods in medicine, 2019. 2019.
    174. Ma, J., et al., Constructing a new inter-calibration method for DMSP-OLS and NPP-VIIRS nighttime light. Remote Sensing, 2020. 12(6): p. 937.
    175. Calabrese, E.J. and L.A. Baldwin, U-shaped dose-responses in biology, toxicology, and public health. Annual review of public health, 2001. 22(1): p. 15-33.
    176. Calabrese, E.J., Biphasic dose responses in biology, toxicology and medicine: accounting for their generalizability and quantitative features. Environmental pollution, 2013. 182: p. 452-460.
    177. Nweke, C.O. and C.J. Ogbonna, Statistical models for biphasic dose-response relationships (hormesis) in toxicological studies. Ecotoxicology and Environmental Contamination, 2017. 12(1): p. 39-55.
    178. Danyuo, Y., et al., Anomalous release kinetics of prodigiosin from poly-N-isopropyl-acrylamid based hydrogels for the treatment of triple negative breast cancer. Scientific reports, 2019. 9(1): p. 1-14.
    179. Tran, V.A. and S.-W. Lee, pH-triggered degradation and release of doxorubicin from zeolitic imidazolate framework-8 (ZIF8) decorated with polyacrylic acid. RSC Advances, 2021. 11(16): p. 9222-9234.
    180. Hernández-Téllez, C.N., et al., Synthesis and characterization of a Fe3O4@ PNIPAM-chitosan nanocomposite and its potential application in vincristine delivery. Polymers, 2021. 13(11): p. 1704.
    181. Adhikari, S., et al., Molecular diversity in several pyridyl based Cu (II) complexes: biophysical interaction and redox triggered fluorescence switch. New Journal of Chemistry, 2016. 40(12): p. 10378-10388.
    182. Zhao, L., et al., A force field for dynamic Cu-BTC metal-organic framework. Journal of molecular modeling, 2011. 17(2): p. 227-234.
    183. Wong-Ng, W., et al., Reference diffraction patterns, microstructure, and pore-size distribution for the copper (II) benzene-1, 3, 5-tricarboxylate metal organic framework (Cu-BTC) compounds. Powder Diffraction, 2015. 30(1): p. 2-13.
    184. Janes, R. and E.A. Moore, Metal-ligand bonding. 2004: Royal society of chemistry.
    185. Zheng, X., et al., Synthesis, crystal structure, photoluminescence and catalytic properties of a novel cuprous complex with 2, 3-pyrazinedicarboxylic acid ligands. Scientific reports, 2020. 10(1): p. 1-9.
    186. Deeth, R.J. and L.J. Hearnshaw, Molecular modelling of Jahn–Teller distortions in Cu (II) N 6 complexes: elongations, compressions and the pathways in between. Dalton Transactions, 2006(8): p. 1092-1100.
    187. Genaro-Mattos, T.C., et al., Antioxidant activity of caffeic acid against iron-induced free radical generation—A chemical approach. PLoS One, 2015. 10(6): p. e0129963.
    188. Rajput, G., et al., Impact of ligand framework on the crystal structures and luminescent properties of Cu (I) and Ag (I) clusters and a coordination polymer derived from thiolate/iodide/dppm ligands. Inorganic chemistry, 2015. 54(6): p. 2572-2579.
    189. Harisomayajula, N.S., S. Makovetskyi, and Y.C. Tsai, Frontispiece: Cuprophilic Interactions in and between Molecular Entities. Chemistry–A European Journal, 2019. 25(38).
    190. Cordero, B., et al., Covalent radii revisited. Dalton Transactions, 2008(21): p. 2832-2838.
    191. Pyykkö, P., Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. The Journal of Physical Chemistry A, 2015. 119(11): p. 2326-2337.
    192. Politeo, N., et al., The first coordination compound of deprotonated 2-bromonicotinic acid: crystal structure of a dinuclear paddle-wheel copper (II) complex. Acta Crystallographica Section E: Crystallographic Communications, 2020. 76(2): p. 225-230.
    193. Moncol, J., et al., Preparation, Structure, Spectral, and Magnetic Properties of Copper (II) Halogenonicotinates: Crystal and Molecular Structure of Tetrakis (μ‐2‐chloronicotinato‐O, O′)‐diaquadicopper (II). Zeitschrift für anorganische und allgemeine Chemie, 2007. 633(2): p. 298-305.
    194. Larkin, P., Infrared and Raman spectroscopy: principles and spectral interpretation. 2017: Elsevier.
    195. Vieira, R.S., et al., Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 374(1-3): p. 108-114.
    196. Hu, S., et al., A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sensors and Actuators B: Chemical, 2018. 267: p. 312-319.
    197. Anandan, S., G.-J. Lee, and J.J. Wu, Sonochemical synthesis of CuO nanostructures with different morphology. Ultrasonics sonochemistry, 2012. 19(3): p. 682-686.
    198. Yang, S.J., et al., MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chemistry of Materials, 2012. 24(3): p. 464-470.
    199. Cychosz, K.A. and M. Thommes, Progress in the physisorption characterization of nanoporous gas storage materials. Engineering, 2018. 4(4): p. 559-566.
    200. Sing, K.S., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 1985. 57(4): p. 603-619.
    201. Bardestani, R., G.S. Patience, and S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 2019. 97(11): p. 2781-2791.
    202. Vu, T.A., et al., Arsenic removal from aqueous solutions by adsorption using novel MIL-53 (Fe) as a highly efficient adsorbent. Rsc Advances, 2015. 5(7): p. 5261-5268.
    203. Bolinois, L., et al., Breathing-induced new phase transition in an MIL-53 (Al)–NH 2 metal–organic framework under high methane pressures. Chemical Communications, 2017. 53(58): p. 8118-8121.
    204. Bitzer, J., S.-L. Heck, and W. Kleist, Tailoring the breathing behavior of functionalized MIL-53 (Al, M)-NH2 materials by using the mixed-metal concept. Microporous and Mesoporous Materials, 2020. 308: p. 110329.
    205. Biswas, S., et al., Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. Microporous and mesoporous materials, 2013. 181: p. 175-181.
    206. Grape, E.S., et al., Breathing metal–organic framework based on flexible inorganic building units. Crystal Growth & Design, 2019. 20(1): p. 320-329.
    207. Sposito, G., On points of zero charge. Environmental science & technology, 1998. 32(19): p. 2815-2819.
    208. Shen, S., et al., High drug-loading nanomedicines: progress, current status, and prospects. International journal of nanomedicine, 2017. 12: p. 4085.
    209. Fong, Y.T., C.-H. Chen, and J.-P. Chen, Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials, 2017. 7(11): p. 388.
    210. 194, I.T., Biological and clinical evaluation of medical devices. 2021, International Organization for Standardization Geneva, Switzerland.
    211. Donohue, J., et al., PJ Copper in drinking-water. WHO Guidelines for Drinking-water Quality. 2003.
    212. Mohseni, M., K. Gilani, and S.A. Mortazavi, Preparation and characterization of rifampin loaded mesoporous silica nanoparticles as a potential system for pulmonary drug delivery. Iranian journal of pharmaceutical research: IJPR, 2015. 14(1): p. 27.
    213. Boman, G., P. Lundgren, and G. Stjernström, Mechanism of the inhibitory effect of PAS granules on the absorption of rifampicin: Adsorption of rifampicin by an excipient, bentonite. European journal of clinical pharmacology, 1975. 8(5): p. 293-299.
    214. Lin, Z., et al., Simultaneous removal of Pb (II) and rifampicin from wastewater by iron nanoparticles synthesized by a tea extract. Journal of Cleaner Production, 2020. 242: p. 118476.
    215. Kais, H., N. Yeddou Mezenner, and M. Trari, Biosorption of rifampicin from wastewater using cocoa shells product. Separation Science and Technology, 2020. 55(11): p. 1984-1993.
    216. Brown Jr, E.G., D.S. Dooley, and R. Chapman, Tuberculosis Drug Information Guide.
    217. Lin, S., et al., Porous iron-carboxylate metal–organic framework: a novel bioplatform with sustained antibacterial efficacy and nontoxicity. ACS applied materials & interfaces, 2017. 9(22): p. 19248-19257.
    218. Sava Gallis, D.F., et al., Antibacterial countermeasures via metal–organic framework-supported sustained therapeutic release. ACS applied materials & interfaces, 2019. 11(8): p. 7782-7791.

    QR CODE