簡易檢索 / 詳目顯示

研究生: 黃朝建
Chao-Jian Huang
論文名稱: 無轉軸角/速度偵測元件永磁同步電動機驅動系統的最佳速度控制
Optimal Speed Control of Sensorless Permanent Magnet Synchronous Motor Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 徐國鎧
Kuo-Kai Shyu
楊勝明
Sheng-Ming Yang
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 轉軸角度估測高頻訊號注入法最佳速度控制
外文關鍵詞: rotor position estimation, high frequency injection, optimal speed control
相關次數: 點閱:315下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討內藏式永磁同步電動機的轉軸角度估測方式及最佳轉速控制器的設計。轉軸角度估測方式使用高頻訊號注入法,利用內藏式電動機的凸極效應進行角度估測。首先,透過驅動系統的電流解析度及配合實驗結果,決定高頻訊號的電壓振幅及頻率。接著,將高頻電壓訊號注入於估測座標d ̂-軸上,並藉由回授d ̂-q ̂軸高頻電流計算出估測與實際角度的誤差。最後,透過遞回修正的方式估測轉軸角度。轉速迴路控制器使用最佳控制,依據系統的動態方程式配合性能指標,計算出最佳控制器參數。
本文使用數位訊號處理器TMS320F2808作為控制核心,實現轉軸角度估測及最佳轉速控制,實驗結果說明本文所提方法的可行性及正確性。


This thesis investigates the rotor position estimation and optimal speed controller for an interior permanent magnet synchronous motor. By using a high-frequency injection method, the rotor position and speed can be estimated based on the saliency of the interior permanent magnet synchronous motor. First, the frequency and amplitude are selected according to the current resolution and the testing results. Next, the high-frequency voltage is injected into the estimated d ̂-axis. Then, the rotor position estimated error is computed via the d ̂-q ̂ axis feedback currents. Finally, an iterative method is used to compute the estimated rotor position. The speed-loop controller is an optimal controller, which is designed based on the motor dynamic equation and performance index.
A digital signal processor TMS320F2808, is used as a control kernel to execute the rotor position estimation and the control algorithm. Experimental results show the feasibility and correctness of the proposed methods.

摘要 Abstract 目錄 圖目錄 表目錄 符號索引 第一章 緒論 1.1研究動機 1.2文獻回顧 1.3研究目的 1.4大綱 第二章 內藏式永磁同步電動機 2.1簡介 2.2結構與特性 2.3電動機的動態數學模型 2.4電動機的高頻數學模型 2.5參數量測 第三章 驅動系統及脈波寬度調變 3.1簡介 3.2閉迴路驅動系統 3.3空間向量脈波寬度調變 第四章 轉軸角/速度估測方法 4.1簡介 4.2高頻注入法 4.2.1原理 4.2.2高頻電壓頻率與振幅的選擇 4.2.3轉軸角度估測器 4.3轉速估測器 第五章 控制器設計 5.1簡介 5.2轉速控制器 5.2.1最佳控制器設計 5.2.2最佳控制器的數位化 5.2.3干擾轉矩估測 第六章 系統研製 6.1簡介 6.2硬體電路 6.2.1數位訊號處理器 6.2.2類比/數位轉換器 6.2.3電流感測電路 6.2.4三相變頻器 6.2.5閘極驅動電路 6.2.6編碼器電路 6.2.7電源電路 6.3軟體程式 6.3.1主程式 6.3.2中斷程式 第七章 實測結果 7.1簡介 7.2實測結果 第八章 結論與未來研究方向 參考文獻

[1]J. Guzinski, H. Abu-Rub, M. Diguet, Z. Krzeminski, and A. Lewicki, "Speed and load torque observer application in high-speed train electric drive," IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 565-574, Feb. 2010.
[2]L. Monjo, F. Córcoles, and J. Pedra, "Saturation effects on torque- and current–slip curves of squirrel-cage induction motors," IEEE Transactions on Energy Conversion, vol. 28, no. 1, pp. 243-254, Mar. 2013.
[3]C. T. Liu, T. Y. Luo, C. C. Hwang, and B. Y. Chang, "Field path design assessments of a high-performance small-power synchronous-reluctance motor," IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, Nov. 2015.
[4]A. Dalal and P. Kumar, "Analytical model for permanent magnet motor with slotting effect, armature reaction, and ferromagnetic material property," IEEE Transactions on Magnetics, vol. 51, no. 12, pp. 1-10, Dec. 2015.
[5]P. M. Lindh, H. K. Jussila, M. Niemela, A. Parviainen, and J. Pyrhonen, "Comparison of concentrated winding permanent magnet motors with embedded and surface-mounted rotor magnets," IEEE Transactions on Magnetics, vol. 45, no. 5, pp. 2085-2089, May 2009.
[6]W. Shireen, M. S. Arefeen, and D. Figoli, "Controlling multiple motors utilizing a single DSP controller," IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 124-130, Jan. 2003.
[7]F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, "Back EMF sensorless-control algorithm for high-dynamic performance PMSM," IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2092-2100, Jun. 2010.
[8]J. L. Shi, T. H. Liu, and Y. C. Chang, "Position control of an interior permanent-magnet synchronous motor without using a shaft position sensor," IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1989-2000, Jun. 2007.
[9]M. Y. Wei and T. H. Liu, "A high-performance sensorless position control system of a synchronous reluctance motor using dual current-slope estimating technique," IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3411-3426, Sep. 2012.
[10] M. J. Corley and R. D. Lorenz, "Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds," IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 784-789, Jul./Aug. 1998.
[11]J. L. Chen, S. K. Tseng, and T. H. Liu, "Implementation of high-performance sensorless interior permanent-magnet synchronous motor control systems using a high-frequency injection technique," IET Electric Power Applications, vol. 6, no. 8, pp. 533-544, Sep. 2012.
[12]N. C. Park and S. H. Kim, "Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method," IET Electric Power Applications, vol. 8, no. 2, pp. 68-75, Feb. 2014.
[13]Y. Li, Z. Q. Zhu, D. Howe, and C. M. Bingham, "Modeling of cross-coupling magnetic saturation in signal-injection-based sensorless control of permanent-magnet brushless AC motors," IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2552-2554, Jun. 2007.
[14]Y. Li, Z. Q. Zhu, D. Howe, C. M. Bingham, and D. A. Stone, "Improved rotor-position estimation by signal injection in brushless AC motors, accounting for cross-coupling magnetic saturation," IEEE Transactions on Industry Applications, vol. 45, no. 5, pp. 1843-1850, Sep./Oct. 2009.
[15]J. M. Liu and Z. Q. Zhu, "Sensorless control strategy by square-waveform high-frequency pulsating signal injection into stationary reference frame," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 2, pp. 171-180, Jun. 2014.
[16]J. M. Liu and Z. Q. Zhu, "Novel sensorless control strategy with injection of high-frequency pulsating carrier signal into stationary reference frame," IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2574-2583, Jul./Aug. 2014.
[17]R. Leidhold, "Position sensorless control of pm synchronous motors based on zero-sequence carrier injection," IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5371-5379, Dec. 2011.
[18]P. L. Xu and Z. Q. Zhu, "Novel square-wave signal injection method using zero-sequence voltage for sensorless control of PMSM drives," IEEE Transactions on Industrial Electronics, vol. 63, no. 12, pp. 7444-7454, Dec. 2016.
[19]V. Petrovic, A. M. Stankovic, and V. Blasko, "Position estimation in salient PM synchronous motors based on PWM excitation transients," IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 835-843, May/Jun. 2003.
[20]S. Kim, J. I. Ha, and S. K. Sul, "PWM switching frequency signal injection sensorless method in IPMSM," IEEE Transactions on Industry Applications, vol. 48, no. 5, pp. 1576-1587, Sep./Oct. 2012.
[21]S. K. Tseng, T. H. Liu, and J. L. Chen, "Implementation of a sensorless interior permanent magnet synchronous drive based on current deviations of pulse-width modulation switching," IET Electric Power Applications, vol. 9, no. 2, pp. 95-106, Mar. 2015.
[22]S. C. Yang and R. D. Lorenz, "Surface permanent magnet synchronous machine position estimation at low speed using eddy-current-reflected asymmetric resistance," IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2595-2604, May 2012.
[23]T. C. Lin and Z. Q. Zhu, "Sensorless operation capability of surface-mounted permanent-magnet machine based on high-frequency signal injection methods," IEEE Transactions on Industry Applications, vol. 51, no. 3, pp. 2161-2171, May/Jun. 2015.
[24]M. Tursini, R. Petrella, and F. Parasiliti, "Initial rotor position estimation method for PM motors," IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1630-1640, Nov./Dec. 2003.
[25]L. M. Gong and Z. Q. Zhu, "Robust initial rotor position estimation of permanent-magnet brushless AC machines with carrier-signal-injection-based sensorless control," IEEE Transactions on Industry Applications, vol. 49, no. 6, pp. 2602-2609, Nov./Dec. 2013.
[26]J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, "Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection," IEEE Transactions on Industry Applications, vol. 40, no. 6, pp. 1595-1604, Nov./Dec. 2004.
[27]S. C. Yang, S. M. Yang, and J. Hui Hu, "Design consideration on the square-wave voltage injection for sensorless drive of interior permanent-magnet machines," IEEE Transactions on Industrial Electronics, vol. 64, no. 1, pp. 159-168, Jan. 2017.
[28]S. Medjmadj, D. Diallo, M. Mostefai, C. Delpha, and A. Arias, "PMSM drive position estimation: contribution to the high-frequency injection voltage selection issue," IEEE Transactions on Energy Conversion, vol. 30, no. 1, pp. 349-358, Mar. 2015.
[29]Y. Gu, F. Ni, D. Yang, and H. Liu, "Switching-state phase shift method for three-phase-current reconstruction with a single DC-link current sensor," IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5186-5194, Nov. 2011.
[30]Y. Xu, H. Yan, J. Zou, B. Wang, and Y. Li, "Zero voltage vector sampling method for PMSM three-phase current reconstruction using single current sensor," IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3797-3807, May 2017.
[31]S. Chakrabarti, T. M. Jahns, and R. D. Lorenz, "A current control technique for induction machine drives using integrated pilot current sensors in the low-side switches," IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 272-281, Jan. 2007.
[32]H. Kubota and K. Matsuse, "Speed sensorless field-oriented control of induction motor with rotor resistance adaptation," IEEE Transactions on Industry Applications, vol. 30, no. 5, pp. 1219-1224, Sep./Oct. 1994.
[33]X. Zhang, L. Sun, K. Zhao, and L. Sun, "Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques," IEEE Transactions on Power Electronics, vol. 28, no. 3, pp. 1358-1365, Mar. 2013.
[34]H. H. Choi, V. Q. Leu, Y. S. Choi, and J. W. Jung, "Adaptive speed controller design for a permanent magnet synchronous motor," IET Electric Power Applications, vol. 5, no. 5, pp. 457-464, May 2011.
[35]W. C. Wang, T. H. Liu, and Y. Syaifudin, "Model predictive controller for a micro-PMSM-based five-finger control system," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3666-3676, Jun. 2016.
[36]M. A. M. Cheema, J. E. Fletcher, M. F. Rahman, and D. Xiao, "Optimal, combined speed, and direct thrust control of linear permanent magnet synchronous motors," IEEE Transactions on Energy Conversion, vol. 31, no. 3, pp. 947-958, Sep. 2016.
[37]T. Tarczewski and L. M. Grzesiak, "Constrained state feedback speed control of PMSM based on model predictive approach," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3867-3875, Jun. 2016.
[38]T. Inoue, Y. Inoue, S. Morimoto, and M. Sanada, "Mathematical model for MTPA control of permanent-magnet synchronous motor in stator flux linkage synchronous frame," IEEE Transactions on Industry Applications, vol. 51, no. 5, pp. 3620-3628, Sep./Oct. 2015.
[39]S. Bolognani, R. Petrella, A. Prearo, and L. Sgarbossa, "Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection," IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 105-114, Jan./Feb. 2011.
[40]J. K. Seok, J. K. Lee, and D. C. Lee, "Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-position-tracking PI controller," IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 399-405, Apr. 2006.
[41]S. E. Lyshevski, Control System Theory with Engineer Applications. Birkhäuser Basel, 2001.
[42]B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods, Prentice-Hall, 1990.
[43]M. Preindl and E. Schaltz, "Load torque compensator for model predictive direct current control in high power PMSM drive systems," IEEE International Symposium on Industrial Electronics, pp. 1347-1352, Jul. 2010.

無法下載圖示 全文公開日期 2022/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE