簡易檢索 / 詳目顯示

研究生: 張致中
Chih-Chung Chang
論文名稱: 運用精密線電化學加工於鋼鐵進行高深寬比深槽成型之研究
High-aspect-ratio-groove fabrication on stainless steel using wire electrochemical machining
指導教授: 周振嘉
chen-chia Chou
口試委員: 王丞浩
cheng-hao Wang
崔海平
hai-ping Tsui
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 82
中文關鍵詞: 電化學加工線放電加工脈衝電壓
外文關鍵詞: Electrochemical micro-machining, pluse voltage
相關次數: 點閱:290下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在發展微機電系統過程中,精密加工是必要且迫切,以至於傳統加工(如:铣床、鑽床等)已不符合其需求,因此製作微結構產品之加工方法是重要且必須完成的,其中電化學加工,便屬於非傳統之特殊微細加工的一種,其特性具有工件表面並無殘留應力,工具電極不受任何損耗、無表面應力集中及表面粗糙度佳的優勢,具有相當的發展潛力和高附加價值,故在工件方面,選用抗蝕性高之304SS不鏽鋼,並在其進行高深寬比深槽成型之研究。
本論文第一部分參考線放電加工之模式,改變傳統電化學加工之工具,使用50m之金屬鎢線作為工具,嘗試在切槽時縮減側邊加工的電場,藉由脈衝式直流電源,提供有規律的間歇供電進行間歇加工,配合縱向水流,在鋼材上製作微細之線性槽體,以改善成品精度以及增加加工之深寬比。本文利用單一因子法分析加工參數(如:操作電壓、電解液濃度、脈衝頻率、加工能率、進給速率等),再以單一因子法分析的結果,作為第二部份線性變化(如:操作電壓、加工能率)的實驗依據。
經由實驗發現最佳參數在於能避免大量孔蝕發生的較低的8V電壓、75%加工能率、15g/l濃度電解液、脈衝週期5000Hz、加上能避免短路之適當進給速率為0.8m/s,並輔以稀釋過後的硫酸,以及配合縱向電解液,將加工中的雜質帶離表面後可有最好的加工成型性,利用線徑為50m的鎢線在進給2350m加工深度可有效維持誤差範圍±10之內的2340m,深寬比約為10.6,過切量為85m之微細槽體,以及進給3000m後,在不增加過切量的情況下,深寬比可達13。
利用線電化學加工的模式縮減加工電場後,在第二部分便探討刀具側邊絕緣後的電場限制之效應,在過往學者皆已化學沉積法鍍製碳化矽(SiC)膜層來限制電場,並且幾乎沒有探討鍍製之時間參數與膜厚比較。故本文利用微弧氧化的技術探討500m鋁薄板在不同時間參數下鍍製之氧化鋁膜膜厚與側邊有無絕緣膜後電化學加工之情況,並發現鍍製時間參數為15min下能有效控制鋁板鍍膜內蝕之現象,進而嘗試在厚度為230m之鋁薄片上鍍製35m厚之氧化鋁絕緣膜,且由SEM圖可看到介面處呈現平坦狀且緻密性高。最後在電化學實驗中發現利用鍍製絕緣膜之試片加工,可有效改善側邊過切量,將原本未披覆絕緣膜層鋁片加工槽體寬度從687m之V型加工槽體縮減至360m,並呈現筆直狀之深槽。
故對於電化學加工中電場的探討,本實驗提供線切割以及微弧氧化鍍製側邊氧化鋁絕緣膜兩種手法來減縮與抑制雜散電流的發散,在過往傳統電化學加工中因側邊過切量太高造成精度不佳,導致加工深度鮮少超過500m以上的情況下,便可採用本論文所敘述之兩種方法來限制電場發散以及提高深寬和加工精度。


In numerous micro-machining, electrochemical micro-machining
(abbreviated as EMM) belongs to the non-conventional machining. It has many advantages such as any metal material can be machined regardless of its hardness, the cathode tool would not break in the machining process, the workpiece after machining will not have any residual stress remained on its machining surface, the machining reproducibility is higher than electro discharge machining(EDM). Due to the EMM that disadvantage is the low machining precision. In this paper, discussing how the working parameters and investigations of EMM affect the machining precision on the manufacture the micro-groove.
In the electrochemical machining of deep groove, especially for small size, driving out the sludge is always difficult. In this paper, using sulphuric acid of 0.05M/l is added to the standard electrolyte namely sodium nitrate to solubilize the by-products. A tungsten wire with 50m of diameter is selected as electrode tool. The foremost characteristics of EMM are researched through scheme of experiments involving various parameters, such as machining voltage, pulse on time and electrolyte concentration, frequency, feeding rate. Finally, taking the best parameters to machine the depth of 3000 micron - meter then we obtain about about 223m of groove diameter and 13 depth-width ratio.

摘要 I ABSTRACT III 目錄 III 圖目錄 VII 表目錄 X 符號說明 XI 第一章 緒論 1 1.1 前言 1 1.2 微機電系統 1 1.3 電化學加工 3 1.4 文獻回顧 4 1.5 研究動機 11 第二章 理論 13 2.1 電化學加工基本理論 13 2.2 極化(POLARIZATION) 14 2.3 電雙層理論 16 2.3.1 電解 16 2.3.2 電雙層 16 2.4 電流效率與電流密度 19 2.4.1 電流效率 19 2.4.2 過電壓 19 2.5 電解液導電度 20 2.6 電化學反應式 21 2.6.1 電解液的功能 21 2.6.2 加工反應式 22 2.7 電極間距和加工時間的關係 24 2.7.1 靜止電極刀具之間隙 24 2.7.2 進給電極刀具之間隙 24 2.8弧氧化之原理 25 第三章 實驗設備與步驟 29 3.1 實驗裝置 29 3.1.1 機台結構設計 29 3.1.2 刀具進給控制系統 30 3.1.3 脈衝電源供應系統 30 3.2 實驗材料 32 3.2.1 電解液 32 3.2.2 陰極刀具 35 3.2.3 陽極工件 36 3.3 實驗步驟及注意事項 37 第四章 結 果 與 討 論 40 4.1 刀具電化學切槽之加工 41 4.2 微線電化學加工 43 4.2.1 操作脈衝電壓之參數分析 43 4.2.2 加工能率之參數分析 48 4.2.3 電解液濃度之參數分析 53 4.2.4 脈衝頻率之參數分析 57 4.2.5 進給速率之參數分析 61 4.2.6 實驗加工成果 65 4.2.7 電解液之選擇(有無添加硫酸) 67 4.3 電場侷限探討 70 4.3.1 絕緣膜製作 70 4.3.2 側邊絕緣之加工探討 74 第五章結論 76 參考文獻 78

1.K. P. Rajurkar, G. Levy and A. Malshe, “Micro and Nano Machining by Electro-Physical and Chemical Processes”, Annals of the CIRP, Vol. 55, pp. 643-658 (2006)
2.D.J. Nagel and M.E. Zaghloul, MEMS: Micro techanology : Mega impact, IEEE Circuit Devices Magazine. Vol. 28, pp. 14-25 (2001).
3.J.A. McGeough, M. Leu, K. P. Rajurkar, A. DeSilva, Q. Liu, “Electroforming Process and Application to Micro/Macro Manufacturing”, CIRP Annals Manufacturing Technology, Vol. 50 (1),499-502 (2001).
4.J.A. McGeough, Principles of electrochemical machining, Chapman Hall, London, p. 9, 1974.
5.B. H. Kim, S. H. Ryu, D. K. Choi and C. N. Chu, Micro electrochemical milling, Journal of Micromechanics and Microengineering, Vol. 15, No.1,pp. 124-129 (2005).
6.木本康雄著,賴耿陽譯著,精密加工之電學應用,復漢出版社 (1982).
7.佐藤敏一著,賴耿陽譯著,金屬腐蝕加工技術,復漢出版社 (1986).
8.M. Purcar,L. Bortels,B. V. d. Bossche, and J. Deconinck , “3D Electrochemical Machining Computer Simulations ,” Journal of Materials Processing Technology Vol. 149, pp.72-478 (2004).
9.M. Purcar, L. Bortels,B. V. d. Bossche, and J. Deconinck, “A User-friendly Simulation Software Tool for 3D ECM ,” Journal of Materials Processing Technology Vol. 149, pp.486-492 (2004).
10.R. Schuster, V. Kirchner, and P. Allongue,“Electrochemical Micro-Machining”,Science, Vol. 289, No. 5, pp. 98-101 (2000).
11.V. Kirchner, L. Cagnon, R. Schuster, and G. Ertl,” Electrochemical Machining of Stainless Steel Microelements with Ultrashort Voltage Pulses”,Applied Physics Letters, Vol. 79, No. 11, pp. 1721-1723 (2001).
12.M. Kock,V. Kirchner, R. Schuster,”Electrochemical Micromachining with Ultrashort Voltage Pulses a Versatile Method with Lithographical Precision”, Electrochimica Acta, Vol. 48, pp. 3213-3219 (2003).
13.A. L. Trimmer, J. L. Hudson, M. Kock and R. Schuster,”Single-step Electrochemical Machining of Complex Nanostructures with Ultrashort Voltagepulses.” Applied Physics Letters, Vol. 82, No. 19, pp. 3327-3329 (2003).
14.B. Bhattacharyya and J. Munda, “Experimental Investigation on the Influent of Electrochemical Machining Parameters on Machining Rate and Accuracy in Micromachining Domain”, International Journal of Machine Tool and Manufacture, Vol. 43, pp. 1301-1310 (2003).
15.M. Kock, V. Kirchner and R. Schuster,”Electrochemical Micromachining with Ultrashort Voltage Pulses a Versatile Method with Lithographical Precision”, Electrochemical Action, Vol. 48, pp. 3213-3219 (2003).
16.Y. Li, Y. Zheng, G. Yang and L. Q. Peng,” Localized Electrochemical Micromachining with Gap Control”, Sensors and Actuators, Vol. 108, pp. 144-148 (2003).
17.P. Allongue, P. Jiang, V. Kirchner, A. L. Trimmer and R. Schuster, “Electrochemical Micromachining of p-Type Silicon”, Journal of Physical Chemistry B, Vol. 108, pp. 14434-14439 (2004).
18.S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chua,”Electro-chemical Micro Drilling Using Ultra Short Pulses”, Precision Engineering.Vol. 28, pp. 129-134 (2004).
19.B. Bhattacharyya , M. Malapati and J. Munda,”Advancement in Electrochemical Micro-machining”, Journal of Materials Processing Technology, Vol. 169, pp. 485-492 (2005).
20.J. A. Kenney and G.S. Hwang,”Electrochemical Machining with Ulta Voltage Pulses: Modeling of Charge Dynamics and Feature Profile Evolution”, Nanotechnology, Vol. 16, pp. S309-S313 (2005).
21.J. A. Kenney and G. S. Hwang, “Etch Trends in Electrochemical Machining with Ultrashort Voltage Pulses”, Electrochemical and Solid-State Letters, Vol. 9, No. 1, pp. D1-D4 (2006).
22.J. A. Kenney and G. S. Hwang,”Computational Analysis of Intratool Interactions in Electrochemical Micromachining with Multitip Tool Electrodes”, Electrochemical and Solid-State Letters, Vol. 9, No. 9, pp. D21-D23 (2006).
23.T. Kurita, K. Chikamori, S. Kubota and M. Hattori,” A Study of Three-dimensional Shape Machining with an ECM system”, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 1311-1318 (2006).
24.Y. F. Luo, “Differential Equation for the Ultra-Fast Transient Migration in Electrolytic Dissolution”, Electrochemistry Communications, Vol. 8, pp. 353-358 (2006).
25.B. J. Park, B. H. Kim, C. N. Chu,” The Effects of Tool Electrode Size on Characteristics of Micro Electrochemical Machining”, Annals of the CIRP Vol. 55, No. 1, 197-200 (2006).
26.E. S. Lee, S. Y. Baek, and C. R. Cho,” A study of The Characteristics for Electrochemical Micromachining with Ultrashort Voltage Pulses”, International Journal of Advanced Manufacture Technology, Vol. 31, pp. 762-769 (2007).
27.D. Zhu1, K. Wang and N. S. Qu,”Micro Wire Electrochemical Cutting by Using in Situ Fabricated Wire Electrode”, CIRP Annals - Manufacturing Technology, Vol. 56, pp. 241-244 (2007).
28.B. Bhattacharyya, M. Malapati, J. Munda and A. Sarkar, “Influence of Tool Vibration on Machining Performance in Electrochemical Micro-machining of Copper”, Journal of Materials Processing Technology, Vol. 47, pp. 335-342 (2007).
29.S. H. Ryu, “Micro fabrication by electrochemical process in citric acid electrolyte”, Journal of Materials Processing Technology, Vol. 209, pp. 2831-2837 (2008).
30.C. H. Jo, B. H. Kim and C. N. Chu, “Micro electrochemical machining for complex internal micro features”, CIRP Annals - Manufacturing Technology, Vol. 384, pp. 247-250 (2009).
31.R. Maeda, K. Chikamori and H. Yamamoto, “Feed Rate of Wire Electrochemical Machining Using Pulsed Current”, Precision Engineering, Vol. 31, pp. 193-199 (1984).
32.D. Zhu, K. Wang and N. S. Qu,” Micro Wire Electrochemical Cutting by Using In Situ Fabricated Wire Electrode”, Annals of the CIRP , Vol. 56, pp. 241-244 (2007).
33.H. S. Shin, B. H. Kim and C. N. Chu,” Analysis of the Side Gap Resulting Form Micro Electrochemical Machining with a Tungsten Wire and Ultrashort Voltage Pulses”, Journal of Macromechanics and Microengineering, Vol. 18, pp. 1-6 (2008).
34.T. Haisch, E. Mittemeijer, J. W. Schultze,” Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions microstructure of surface films formed by carbides”, Electrochimica Acta, Vol. 47, pp. 235-241 (2001).
35.M. M. Lorengel, I. Kluppel, C. Rosenkranz, H. Bettermann and J. W. Schultze, “The surface structure during pulsed ECM of iron in NaNO3”, Electrochimica Acta, Vol. 48, pp. 3203-3211 (2003).
36.M. M. Lorengel, I. Kluppel, C. Rosenkranz, H. Bettermann, J. W. Schultze,” Pulsed electrochemical machining of iron in NaNO3 : fundamentals and new aspects”, material and manufacturing processes, Vol. 20, pp. 1-8 (2005).
37.M. M. Lorengel and C. Rosenkranz,”Micro-electrochemical surface and product investigations during electrochemical machining (ECM) in NaNO3”, Electrochimica Acta, Vol. 47, pp. 785-794 (2005).
38.Zhi-Wen Fan &Lih-Wu Hourng & Ming-Yuan Lin,” Experimental investigation on
the influenceof electrochemical micro-drilling by short pulsed voltage”, Int J Adv Manuf Technol (2012)
39.M. Datta and D. Landolt, “Fundamental Aspects and Applications of Electrochemical Microfabrication, Electrochemical Acta”, Vol.45, pp. 2535–2558 (2000).
40.田扶助編著,電化學基本原理與應用,五洲出版社 (2004).
41.胡啟章編著,電化學原理與方法,五南圖書 (2002).
42.楊榮顯,“工程材料學”,全華科技圖書 (1997).
43.Yang Guangliang, L. Xianyi, Bai Yizhen, Cui Haifeng, Jin Zengsum, Journal of Alloys and Compounds.345, 196-200, (2002).
44.L.O. Snizhko, A.L. Yerokhin, A. Pilkington, N.L. Gurevina, D.O. Misnyankin, A. Leyland, A. Matthews,“Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions”, ElectrochimicaActa, 49, 2085–2095, (2004).
45.Yerokhin A. L., Nie X., Leyland A., Matthews A., Dowey S. J., “Plasma electrolysis for surfaceengineering”, Surface and Coatings Technology, 122, 2-3, 73-93, (1999).
46.鐘時俊、O. Demine、翁榮洲,“微電弧氧化表面處理原理與應用”,工業材料雜誌,194,176-180,(2003)。
47.C. Rosenkranz, M. M. Lorengel and J. W. Schultze, “The surface structure during pulsed ECM of iron in NaNO3”, Electrochimica Acta, Vol. 50, pp. 2009-2016 (2005).
48.張啟生,“二維熱流效應對電化學加工反求工具形狀之分析”,國立中央大學機械工程研究所博士論文 (1991).
49.柯賢文編著,腐蝕及其防制,全華科技,p.93-96 (1995).

QR CODE