簡易檢索 / 詳目顯示

研究生: 林家煥
Jia-Huan Lin
論文名稱: 研製擴散型侷限結構之氮化鎵垂直共振腔面射型光源
Research on GaN-based vertical cavity surface emitting diodes with diffusion-defined confinement structure
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 黃鶯聲
Ying-Sheng Huang
李志堅
Chih-Chien Lee
陳致曉
Chih-Hsiao Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 102
中文關鍵詞: 擴散型侷限結構氮化鎵垂直共振腔面射型光源
外文關鍵詞: diffusion-defined confinement structure, GaN-based vertical cavity surface emitting diode
相關次數: 點閱:186下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文根據學長所做的氮化鎵發光二極體的電流阻擋層結構,對擴散理論與實驗做了更深入的探討。藉由調整快速升溫退火爐不同的時間及溫度,而後由二次離子質譜儀(SIMS)分析得到不同溫度下的擴散係數,因而決定了理想的熱擴散製程溫度及時間,能夠製作出具有良好侷限效果的載子侷限結構。
在氮化鎵垂直共振腔面射型雷射(VCSEL)的研究中,常見的侷限結構為氧化物侷限結構,本論文首度用擴散做VCSEL的載子侷限結構。在製作完ITO電極以及P型電極後,透過光電特性的量測可以得知此侷限結構成功地將電流侷限在所定義的出光孔徑內部,並且藉由不同的出光孔徑大小觀察其發光分布趨勢。最後鍍製介電質布拉格反射鏡後,測量其頻譜顯示在387nm~480nm具有高達99%的反射率,符合預期。再測量光電特性也相當正常,對於尚未能觀察到元件的雷射現象有所探討。


Following the study of the current blocking layer (CBL) of GaN-based light emitting diodes (LED) that senior colleague did, in this thesis, we further studied the related diffusion theory and determined its coefficients experimentally. Using rapid thermal annealing system, we adjusted the time period and temperature of the thermal diffusion process. From data analysis of secondary ion mass spectrometer (SIMS) measurements, the diffusion coefficients at different temperatures were obtained. From the information, we determined the ideal time period and temperature to execute the thermal diffusion process.
Most confinement structures used in GaN-based vertical cavity surface emitting lasers (VCSEL) were oxide confined structures. This was the first time, to our knowledge; diffusion was used to define the carrier confinement structure for GaN-based VCSEL. After processing, I-V, L-I curves and CCD (charge-coupled device) images were taken to confirm the current confinement within the aperture defined by the diffusion. The illumination patterns of different aperture sizes were recorded.
The dielectric distributed Bragg reflector (DBR) deposited on top of the devices exhibited high reflectivity of 99% in a wavelength range from 387nm to 480nm, fully covering the target wavelength of 420±10nm. However there was no sign of lasing yet before thermal rollover. Some issues were addressed.

摘要...........................................................................I ABSTRACT......................................................................II 致謝..........................................................................IV 目錄...........................................................................V 圖片目錄....................................................................VIII 表格目錄.....................................................................XII 第一章 導論....................................................................1 1.1 氮化鎵材料之簡介...........................................................1 1.2 垂直共振腔面射型雷射.......................................................6 1.3 研究動機...................................................................8 第二章 垂直共振腔面射型雷射原理................................................9 2.1 共振腔特性.................................................................9 2.2 布拉格反射鏡..............................................................12 2.2.1 分佈布拉格反射鏡半導體雷射..............................................13 2.2.2 布拉格反射鏡介紹........................................................14 2.3 侷限結構簡介..............................................................18 第三章 載子侷限結構介紹.......................................................21 3.1 探討摻雜矽為載子侷限結構..................................................22 3.1.1 擴散理論................................................................23 3.1.2 擴散係數................................................................27 3.2 矽擴散載子侷限結構設計....................................................28 3.3 SIMS結果分析與討論........................................................31 第四章 元件製程與儀器介紹.....................................................41 4.1 元件製程..................................................................41 4.1.1 試片清潔................................................................43 4.1.2 黃光微影製程............................................................44 4.1.3 垂直共振腔面射型雷射元件製作............................................49 4.2 製程儀器介紹..............................................................58 4.2.1 電子束蒸鍍機(E-beam evaporator).........................................58 4.2.2 射頻濺鍍機(RF sputter)..................................................60 4.2.3 電子槍蒸鍍系統..........................................................62 4.3 量測儀器介紹..............................................................64 4.3.1 光激發螢光(Photoluminescence, PL).......................................64 4.3.2 L-I與I-V量測系統........................................................66 4.3.3 太陽光源模擬器及I-V量測系統.............................................68 4.3.4 飛行時間二次離子質譜儀(Time-of-Flight Secondary Ion Mass Spectrometer, TOF-SIMS).....................................................................70 第五章 實驗結果與討論.........................................................72 5.1 透明導電層(ITO)完成後之量測...............................................74 5.2 P型電極完成後之量測.......................................................81 5.2.1 元件電特性比較..........................................................82 5.2.2 元件光特性比較..........................................................87 5.3 介電質布拉格反射鏡完成後之量測............................................93 第六章 結論與未來展望........................................................100 參考文獻.....................................................................103

[1]T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, “Optical band gap energy of wurtzite InN,” Appl. Phys. Lett., Vol. 81, No. 3, pp. 1246-1248 (2002)
[2]V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev , F. Bechstedt , A.V. Mudryi, E. E. Halle, “Absorptionand Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap,” Physica Status Solidi, B Vol. 229, No. 3, pp. R1−R3 (2002)
[3]Johnson, W. C., Parsons, J., Crew, J. Phys. Chem., Vol. 36, pp. 2561 (1932)
[4]Maruska, H. P. and Tietjen, The preparation and properties of vapor-deposited single-crystalline GaN. Appl. Phys. Lett., Vol. 15, pp. 327 (1969)
[5]Shuji Nakamura, Shigefusa F. Chichibu, “Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes”, CRC Press, Boca Raton (2000)
[6]H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 329−2330 (1979)
[7]Y. Onishi, N. Saga, K. Koyama, H. Doi, T. Ishizuka, T. Yamada, K. Fujiii. H. Mori, J. Hasimoto, M. Shimazu, A. Yamaguchi, and T. Katsuyama, “Long-wavelength GaInNAs vertical-cavity surface-emitting laser with buried tunnel junction,” IEEE J. Select. Topics Quantum Electron., vol. 15, pp. 838 (2009)
[8]J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, “An optically pumped GaN-AlGaN vertical cavity surface emitting laser,” Appl. Lett., vol. 69, pp. 1-3 (1996)
[9]C.-C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, and S. C. Wang, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett., vol. 87, pp. 081105 (2005)
[10]J.-T. Chu, T.-C. Lu, M. You, B.-J. Su, C.-C. Kao, H.-C. Kuo, and S.-C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 89, pp. 121112 (2006)
[11]T.-C. Lu, C.-C. Kuo, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett., vol. 92, pp. 141102 (2008)
[12]T.-C. Lu, S.-W. Chen, T.-T. Wu, P.-M. Tu, C.-K. Chen, C.-H. Chen, H.-C. Kuo, and S.-C. Wang, “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett., vol. 97, pp. 071114 (2010)
[13]Y. Higuchi, K. Omae, H. Matsumura, T. Mukai, “Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection,” Appl. Phys. Express vol. 1, pp. 121102 (2008)
[14]Kunimichi Omae, Yu Higuchi, Kyosuke Nakagawa, Hiroaki Matsumura, and Takashi Mukai, “Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate,” Appl. Phys. Express vol. 2, 052101 (2009)
[15]M. Ogura, W. Hsin, M.-C. Wu, S. Wang, J.R. Whinnery, S. C. Wang, and J. J. Yang, “Surface-emitting laser diode with vertical GaAs/ GaAlAs quarter-wavelength multilayer and lateral buried heterostructure,” Appl. Phys. Lett., vol. 51, pp. 1655-1657 (1987)
[16]Y.-K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, C. Carter-Coman, R. S. Kern, F. A. Kish, and M. R. Krames, “A vertical cavity light emitting InGaN quantum well heterostructure,” Appl. Phys. Lett., vol. 74, pp. 3441-3443 (1999)
[17]T. Someya, K. Tachibana, J. Lee, T. Kamiya, and Y. Arakawa, “Lasing emission from an In0.1Ga0.9N vertical cavity surface emitting laser,” Jpn. J. Appl. Phys., vol. 37, pp. L1424-L1426 (1998)
[18]T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science, vol. 285, pp. 1905–1906 (1999)
[19]盧廷昌、王興宗,半導體雷射技術,五南出版社,台北 (2010).
[20]廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,碩士論文,國立台灣科技大學,台北 (2011)。
[21]Callister, William D., Rethiwisch, David G., Materials Science and Engineering : An Introduction, John Wiley & Sons, NY (2009)
[22]S. M. Sze, Physics of semiconductor devices, John Wiley & Sons, NY (2007)
[23]C. J. Pan, G. C. Chi, and B. J. Pong, “Si diffusion in p-GaN,” J. Vac. Sci. Technol. B 22, 1727 (2004)
[24]H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI),” Jpn. J. Appl. Phys., Vol. 28, pp. L2112-L2114, (1998)
[25]S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films”, Jpn. J. Appl. Phys., Vol. 31, pp. L139-L142 (1992)
[26]Abhishek Motayed, Ravi Bathe, Mark C. Wood, Ousmane S. Diouf, R. D. Vispute et al., “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN”, J. Appl. Phys., 93, 1087 (2003)
[27]Z.Z. Chen, Z.X. Qin, C.Y. Hu, X.D. Hu, T.J. Yu, Y.Z. Tong, X.M. Ding, G.Y. Zhang, “Ohmic contact formation of Ti/Al/Ni/Au to n-GaN by two-step annealing method”, Materials Science and Engineering, B111, 36–39 (2004)
[28]Jörg Neugebauer and Chris G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN”, Appl. Phys. Lett., 69, 503 (1996)
[29]K. Saarinen et al., “Observation of Native Ga Vacancies in GaN by Positron Annihilation”, Physical Review Letters, 79(16), 3030-3033 (1997)
[30]T. Mattila and R. M. Nieminen , “Point-defect complexes and broadband luminescence in GaN and AlN”, Physical Review B, 55(15), 9571-9576 (1997)
[31]李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,台北 (2009)

QR CODE