簡易檢索 / 詳目顯示

研究生: 黃秀麗
Lisa Monica
論文名稱: 以浮除法分離水溶液中釔-螯合基錯合物
Flotation Separation of Yttrium-ligand Complexes from Aqueous Solution
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 劉志成
Jhy-Chern Liu
顧洋
Young Ku
邱昱誠
Yu-Cheng Chiu
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 78
中文關鍵詞: 錯合物浮除分離溶解度
外文關鍵詞: flotation, complex, separation, solubility, water, yttrium
相關次數: 點閱:135下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於稀土元素應用廣泛、供應不確定、需求旺盛,包括釔在內的稀土元素的可持續利用已成為一項重要任務。因此,從電子廢棄物和廢水中開發其回收技術至關重要。本研究的目的是檢查 釔 與 釔-螯合基錯合物的溶解度和形態,以及模擬稀土元素處理過程中產生的溶液通過分散式浮除法分離這些金屬。釔在酸鹼值為 7.4-11.2 的範圍內是高度不溶的,並且隨著 酸鹼值變得更酸性或更鹼性而更易溶解。發現浮除分離可以用擬一級動力學模型描述,其速率常數隨著氮氣流量的增加而增加。離子強度阻礙了這些金屬的浮除分離效率。 釔的回收效率受捕收劑類型和捕收劑劑量的影響。十二烷基硫酸鈉 (SDS) 促進了釔Y 的回收,而十六烷基三甲基溴化銨 和 Triton X-100無效。基於 Y-SDS 複合物的形成討論了這些影響。在酸鹼值 4.03 時浮選分離的主要機制是 Y(DS)2+、Y(DS)2+、Y3+ 和 Y(DS)3 的游離 DS- 和陽離子物質之間的靜電相互作用。 釔在 酸鹼值6.54 時作為 Y-SDS 複合物(Y(DS)2+、Y(DS)2+、Y(DS)3、Y(OH)2DS、Y(OH)(DS)2 和 Y(OH)DS3-)。 酸鹼值8.45 時的浮選分離是離子浮選和沉澱浮選的組合。 在酸鹼值 9.87時Y(OH)3(s)為主要物質,且SDS 有效地將其分離。


Due to their wide applications, uncertainties in supply and high demand, sustainable utilization of rare earth elements (REEs), including yttrium (Y), has become an important task. The development of its recovery technology from e-waste and wastewater is therefore critical and essential. The objectives of this study are to examine solubility and speciation of Y and Y-ligand complexes, and flotation separation of these metals via dispersed air flotation (DiAF), which simulates the solutions generated in processing of REEs. Yttrium was highly insoluble in pH range of 7.4-11.2, and was more soluble as pH became more acidic or more alkaline. It was found that the flotation separation could be described by pseudo-first order kinetic model and its rate constant increased with increasing N2 flow rate. Ionic strength hindered flotation separation efficiency of these metals. Recovery efficiency of Y was affected by types of collectors and collector doses. While sodium dodecyl sulfate (SDS) facilitated the recovery of Y, cetyl trimethyl ammonium bromide (CTAB) and triton X-100 (TX-100) were not effective. These effects were discussed based on the formation of Y-SDS complexes. The main mechanism of flotation separation at pH 4.03 was electrostatic interaction between free DS- and cationic species of Y(DS)2+, Y(DS)2+, Y3+, and Y(DS)3. Yttrium was recovered at pH 6.54 as Y-SDS complexes (Y(DS)2+, Y(DS)2+, Y(DS)3, Y(OH)2DS, Y(OH)(DS)2, and Y(OH)DS3-). The flotation separation at pH 8.45 was the combination ion flotation and precipitate flotation. Y(OH)3(s) was the dominant species at pH 9.87, and SDS effectively separated it.

摘要 iii ABSTRACT v ACKNOWLEDGEMENT vi TABLE OF CONTENTS viii LIST OF FIGURES x LIST OF TABLES xi CHAPTER 1 INTRODUCTION 1-1 1.1. Background 1-1 1.2. Objectives of study 1-2 1.3. Scope of research 1-3 CHAPTER 2 LITERATURE REVIEW 2-1 2.1. Yttrium 2-1 2.1.1. Aqueous chemistry of Y 2-1 2.1.2. Recovery of Y 2-5 2.2. Flotation separation 2-9 2.2.1. pH 2-11 2.2.2. Surfactant 2-11 2.2.3. Gas flow rate and bubble size 2-12 2.2.4. Ionic strength 2-13 CHAPTER 3 MATERIALS AND METHODS 3-1 3.1. Materials 3-1 3.2. Equipment and Instruments 3-1 3.3 Methods 3-2 3.3.1. Solubility determination 3-2 3.3.2. Flotation experiment 3-3 3.3.3. ICP-OES analysis 3-4 3.3.5. Conductance measurements 3-5 3.3.6. Potentiometric titration 3-5 3.4. Simulation programs 3-7 3.4.1. Software for speciation determination (PHREEQC) 3-7 3.4.2. Hyperquad2008 (Equilibrium constants from potentiometric data) 3-7 3.4.3 Hyperquad simulation and speciation (HySS2009) 3-8 3.5. Experimental flow chart 3-8 CHAPTER 4 RESULTS AND DISCUSSION 4-1 4.1. Yttrium 4-1 4.1.1. Speciation and solubility of Y in water 4-1 4.1.2. Kinetics and effect of N2 flow rate on flotation 4-4 4.1.3. Effect of pH 4-5 4.1.3.1 Different surfactant types 4-5 4.1.3.2 Precipitate flotation 4-10 4.1.3.3 Ion flotation 4-10 4.1.3.4 Specific conductance of surfactant 4-15 4.1.4. Effect of collector dose 4-18 4.1.5. Effect of ionic strength 4-19 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 5-1 5.1 Conclusions 5-1 5.2 Recommendations 5-2 REFERENCES R-1 APPENDIX A A-1

Ahmadova, G. A., Rahimov, R. A., Abilova, A. Z., Huseynova, K. A., Imanov, E., Zubkov, F. I. (2021). Effect of head-group of cationic surfactants and structure of ionic groups of anionic polyelectrolyte in oppositely charged polymer-surfactant complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 613, 126075.
Al-Soufi, W., Piñeiro, L., Novo, M. (2012). A model for monomer and micellar concentrations in surfactant solutions: Application to conductivity, NMR, diffusion, and surface tension data. Journal of Colloid and Interface Science, 370(1), 102–110.
Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A. (1999). Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coordination Chemistry Reviews, 184(1), 311–318.
Aleshin, D. K., Mashkovtsev, M. A., Rychkov, V. N., Bunkov, G. M., Baksheev, E. O., Zhirenkina, N.V. (2020). Evolution of layered yttrium hydroxide nitrate particles during controlled double-jet precipitation. Powder Technology, 376, 12–21.
Amaya, T., Kakihana, H., Maeda, M. (1973). The Hydrolysis of Y 3+ , La 3+ , Gd 3+ , and Er 3+ Ions in an Aqueous Solution Containing 3 M (Li)ClO 4 as an Ionic Medium . In Bulletin of the Chemical Society of Japan, 46(6), 1720–1723.
Ambaye, T. G., Vaccari, M., Castro, F. D., Prasad, S., Rtimi, S. (2020). Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives. Environmental Science and Pollution Research, 27(29), 36052–36074.
Anastopoulos, I., Bhatnagar, A., Lima, E. C. (2016). Adsorption of rare earth metals: A review of recent literature. Journal of Molecular Liquids, 221, 954–962.
Baes, C. F., Mesmer, R.S. (1976). The hydrolysis of cations. John Wiley & Sons.
Bahrami, A., Ghorbani, Y., Hosseini, M. R., Kazemi, F., Abdollahi, M., Danesh, A. (2019). Combined effect of operating parameters on separation efficiency and kinetics of copper flotation. Mining Engineering, 71(1), 43–45.
Bahri, Z., Rezai, B., Kowsari, E. (2016). Selective separation of gallium from zinc using flotation: Effect of solution pH value and the separation mechanism. Minerals Engineering, 86, 104–113.
Barhoum, A., García-Betancourt, M. L., Rahier, H., VanAssche, G. (2018). Physicochemical characterization of nanomaterials: Polymorph, composition, wettability, and thermal stability. In Emerging Applications of Nanoparticles and Architectural Nanostructures: Current Prospects and Future Trends. Elsevier Inc.
Baynham, S., Ireland, P., Galvin, K. (2020). Enhancing ion flotation through decoupling the overflow gas and liquid fluxes. Minerals, 10(12), 1–17.
Božić, J., Krznarić, I., Kallay, N. (1979). Precipitation and micellization of silver, copper and lanthanum dodecyl sulphates in aqueous media. Colloid and Polymer Science Kolloid-Zeitschrift & Zeitschrift Für Polymere, 257(2), 201–205.
Brechbiel, M. W. (2008). Bifunctional chelates for metal nuclides. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 52(2), 166–173.
Bressel, K., Prevost, S., Appavou, M. S., Tiersch, B., Koetz, J., Gradzielski, M. (2011). Phase behaviour and structure of zwitanionic mixtures of perfluorocarboxylates and tetradecyldimethylamine oxide - Dependence on chain length of the perfluoro surfactant. Soft Matter, 7(23), 11232–11242.
Brown, P. L., Ekberg, C., (2016). Hydrolysis of Metal Ions. In Hydrolysis of Metal Ions (Vol. 1). John Wiley & Sons.
Bundjaja, V., Santoso, S. P., Go, A. W., Wijaya, R., Truong, C. T., Yuliana, M., Soetaredjo, F. E., Ju, Y. H., Angkawijaya, A. E. (2020). Protocatechuic acid-metal-nicotine complexation study for chelation of smoking-related poisoning. Journal of Molecular Liquids, 312, 113428.
Byrne, R. H. (2010). Comparative carbonate and hydroxide complexation of cations in seawater. Geochimica et Cosmochimica Acta, 74(15), 4312–4321.
Carpena, P., Aguiar, J., Bernaola-Galván, P., Carnero Ruiz, C. (2002). Problems associated with the treatment of conductivity-concentration data in surfactant solutions: Simulations and experiments. Langmuir, 18(16), 6054–6058.
Chang, L., Cao, Y., Fan, G., Li, C., Peng, W. (2019). A review of the applications of ion floatation: Wastewater treatment, mineral beneficiation and hydrometallurgy. RSC Advances, 9(35), 20226–20239.
Chen, H. R., Chen, C. C., Reddy, A. S., Chen, C. Y., Li, W. R., Tseng, M. J., Liu, H. T., Pan, W., Maity, J. P., Atla, S. B. (2011). Removal of mercury by foam fractionation using surfactin, a biosurfactant. International Journal of Molecular Sciences, 12(11), 8245–8258.
Chirkst, D. E., Lobacheva, O. L., Berlinskii, I.V., Sulimova, M. A. (2009). Recovery and separation of Ce3+ and Y3+ ions from aqueous solutions by ion flotation. Russian Journal of Applied Chemistry, 82(8), 1370–1374.
Chirkst, D. E., Lobacheva, O. L., Dzhevaga, N.V. (2011). Ion flotation of rare-earth metals with sodium dodecyl sulfate. Russian Journal of Applied Chemistry, 84(9), 1476–1482.
Cho, Y. S., Laskowski, J. S. (2002). Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 64(2–3), 69–80.
DeMichelis, I., Ferella, F., Varelli, E. F., Vegliò, F. (2011). Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses. Waste Management, 31(12), 2559–2568.
Dobby, G. S., Finch, J. A. (1991). Column flotation: A selected review, part II. Minerals Engineering, 4(7–11), 911–923.
Dobson, K. D., Roddick-Lanzilotta, A. D., McQuillan, A. J. (2000). In situ infrared spectroscopic investigation of adsorption of sodium dodecylsulfate and of cetyltrimethylammonium bromide surfactants to TiO2, ZrO2, Al2O3, and Ta2O5 particle films from aqueous solutions. Vibrational Spectroscopy, 24(2), 287–295.
Downey, D. M. (1980). Ion Flotation Studies and Separation Procedures for the Platinum Group Metals. [Doctoral dissertation, Louisiana State University]. LSU Historical Dissertations and Thesis.
Doyle, F. M. (2003). Ion flotation - Its potential for hydrometallurgical operations. International Journal of Mineral Processing, 72(1–4), 387–399.
Ellis, L. (2018). US Department of the Interior - Office of the Secretary: Final List of Critical Minerals 2018. Federal Register, 83(97), 23295–23296.
European Commission. (2017). Study on the review of the list of critical raw materials: Executive summary. Available at: http://ec.europa.eu/growth/sectors/rawmaterials/specificinterest/critical_en (page accessed on May 10, 2021)
Farrokhpay, S. (2011). The significance of froth stability in mineral flotation - A review. Advances in Colloid and Interface Science, 166(1–2), 1–7.
Fazary, A. E., Bani-Fwaz, M. Z., Fawy, K. F., Sahlabji, T., Awwad, N. S., Abd-Rabboh, H. S. M. (2018). Norleucine metal complexes: Comments on their equilibrium constants data. Reviews in Inorganic Chemistry, 38(2), 43–48.
Filippov, L. O., Joussemet, R., Houot, R. (2000). Bubble spargers in column flotation: Adaptation to precipitate flotation. Minerals Engineering, 13(1), 37–51.
Frolova, U. K., Kumok, V. N., Serebrennikov, V.V. (1966). Ion Hydrolysis of Rare Earths and Yttrium in Aqueous Solutions. Izv. Vyssh. Ucheb. Zaved, Khim., 9, 176–179.
Galhoum, A. A., Mahfouz, M. G., Abdel-Rehem, S. T., Gomaa, N. A., Atia, A. A., Vincent, T., Guibal, E. (2015). Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd(III), Dy(III) and Yb(III)]. Cellulose, 22(4), 2589–2605.
Gans, P., Sabatini, A., Vacca, A. (1996). Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta, 43(10), 1739–1753.
Gu, Z., Wu, Q., Zheng, Z., Li, Z., Jiang, Y., Tang, C., Lin, P. (1994). Laboratory and pilot plant test of yttrium recovery from wastewater by electrostatic pseudo liquid membrane. Journal of Membrane Science, 93(2), 137–147.
Hąc-Wydro, K., Pałasińska, I., Miśkowiec, P. (2016). The comparative studies on the ability of anionic surfactants to bind lead(II) ions. Journal of Molecular Liquids, 219, 1071–1077.
Hansch, C., Leo, A., Hoekman, D. (1995). Exploring QSAR: Hydrophobic, electronic, and steric constants. In D.Hansch, C; Leo, A; Hoekman (Ed.), Exploring QSAR: Hydrophobic, Electronic, and Steric Constants (2). American Chemical Society.
He, J., Kappler, A. (2017). Recovery of precious metals from waste streams. Microbial Biotechnology, 10(5), 1194–1198. https://doi.org/10.1111/1751-7915.12759
He, Y., Xu, Z. (2014). The status and development of treatment techniques of typical waste electrical and electronic equipment in China: A review. Waste Management and Research, 32(4), 254–269.
Heytmeijer, H. R. (1983). Recovery of Yttrium and Europium from Contaminated Solutions. (United State Patent No. US 4432948A). https://patents.google.com/patent/US4432948A/en
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 211–212, 317–331.
Huang, C. J., Liu, J. C. (1999). Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer. Water Research, 33(16), 3403–3412.
Innocenzi, V., DeMichelis, I., Ferella, F., Vegliò, F. (2013). Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: Experimental results and economic simulation. Waste Management, 33(11), 2390–2396.
Innocenzi, Valentina, DeMichelis, I., Ferella, F., Beolchini, F., Kopacek, B., Vegliò, F. (2013). Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation. Waste Management, 33(11), 2364–2371.
Innocenzi, Valentina, DeMichelis, I., Kopacek, B., Vegliò, F. (2014). Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes. Waste Management, 34(7), 1237–1250.
Innocenzi, V., Prisciandaro, M., Tortora, F., Mazziotti di Celso, G., Vegliò, F. (2018). Treatment of WEEE industrial wastewaters: Removal of yttrium and zinc by means of micellar enhanced ultra filtration. Waste Management, 74, 393–403.
Jafari, S., Sillanpää, M. (2020). Adsorption of dyes onto modified titanium dioxide. In Advanced Water Treatment: Adsorption (85–160). Elsevier Inc.
Ji, Y., Song, A., Li, C., Cao, Y. (2021). Role of Sparger Configuration in Determining Flotation Performance under Oscillatory Air Supply. Processes, 9(4), 638.
Jiang, H., Ji, W., Yang, Q., Xu, L., Zhao, C., Hu, Y. (2017). Synergistic adsorption and flotation of new mixed cationic/nonionic collectors on muscovite. Minerals, 7(5).
Jordens, A., Cheng, Y. P., Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114.
Jyothi, R. K., Thenepalli, T., Ahn, J. W., Parhi, P. K., Chung, K. W., Lee, J. Y. (2020). Review of rare earth elements recovery from secondary resources for clean energy technologies: Grand opportunities to create wealth from waste. Cleaner Production, 267, 122048.
Kagawa, M., Omuri, M., Syono, Y. (1987). Surface Characterization of Zirconia After Reaction with Water. Journal of the American Ceramic Society, 70(9), C-212-C–213.
Karavaiko, G. I., Kareva, A. S., Avakian, Z. A., Zakharova, V. I., Korenevsky, A. A. (1996). Biosorption of scandium and yttrium from solutions. Acta Acustunited Ac., 26(4), 551–556.
Khan, N., Brettmann, B. (2018). Intermolecular interactions in polyelectrolyte and surfactant complexes in solution. Polymers, 11(1).
Klungness, G. D., Byrne, R. H. (2000). Comparative hydrolysis behavior of the rare earths and yttrium: The influence of temperature and ionic strength. Polyhedron, 19(1), 99–107.
Laplante, A. R., Toguri, J. M., Smith, H. W. (1983). The effect of air flow rate on the kinetics of flotation. Part 2: The transfer of material from the froth over the cell lip. Mineral Processing, 11(3), 221–234.
Li, Y., Zhao, W., Gui, X., Zhang, X. (2013). Flotation kinetics and separation selectivity of coal size fractions. Physicochemical Problems of Mineral Processing, 49(2), 387–396.
Lie, J., Ismadji, S., Liu, J. C. (2019). Microwave-assisted leaching of rare earth elements (Y and Eu) from waste cathode ray tube phosphor. Chemical Technology and Biotechnology, 94(12), 3859–3865.
Lin, E. Y., Rahmawati, A., Ko, J. H., Liu, J. C. (2018). Extraction of yttrium and europium from waste cathode-ray tube (CRT) phosphor by subcritical water. Separation and Purification Technology, 192, 166–175.
Liu, H., Zhang, S., Pan, D., Tian, J., Yang, M., Wu, M., Volinsky, A. A. (2014). Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution. Hazardous Materials, 272, 96–101.
Liu, X., Byrne, R. H. (1998). Comprehensive investigation of yttrium and rare earth element complexation by carbonate ions using ICP-mass spectrometry. Solution Chemistry, 27(9), 803–815.
Liu, X. J., Lai, Z. P., Yu, L. P., Sun, Y. J., Madsen, D. (2012). Luminescence chronology of aeolian deposits from the Qinghai Lake area in the Northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications. Quaternary Geochronology, 10, 37–43.
Lobacheva, O. L., Chirkst, D. E., Dzhevaga, N.V. (2012). Solvent sublation of yttrium ions from dilute aqueous solutions by use of sodium dodecyl sulfate. Russian Journal of Applied Chemistry, 85(8), 1153–1156.
Lu, G. W., Gao, P. (2010). Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In Handbook of Non-Invasive Drug Delivery Systems. William Andrew.
Lucier, C. A., Gareau, B. J. (2020). Electronic Waste Recycling and Disposal: An Overview. In Assessment and Management of Radioactive and Electronic Wastes. IntechOpen.
Luo, Y. R., Byrne, R. H. (2001). Yttrium and rare Earth element complexation by chloride ions at 25°C. Solution Chemistry, 30(9), 837–845.
Luo, Y. R., Byrne, R. H. (2004). Carbonate complexation of yttrium and the rare earth elements in natural waters. Geochimica et Cosmochimica Acta, 68(4), 691–699.
Luo, Y. R., Byrne, R. H. (2007). The influence of ionic strength on yttrium and rare earth element complexation by fluoride ions in NaClO4, NaNO3 and NaCl solutions at 25 °c. Solution Chemistry, 36(6), 673–689.
Ma, X., Bruckard, W. J., Holmes, R. (2009). Effect of collector, pH and ionic strength on the cationic flotation of kaolinite. International Journal of Mineral Processing, 93(1), 54–58.
Maeda, M., Amaya, T., Ohtaki, H., Kakihana, H. (1972). Mixed Solvent Deuterium Isotope Effects on the Hydrolysis of UO 2 2+ and Be 2+ Ions . Bulletin of the Chemical Society of Japan, 45(8), 2464–2468.
Mahmoud, M. R., Soliman, M. A., Rashad, G. M. (2017). Performance appraisal of foam separation technology for removal of Co(II)-EDTA complexes intercalated into in-situ formed Mg-Al layered double hydroxide from radioactive liquid waste. Chemical Engineering Journal, 326, 781–793.
Mancheri, N. A., Sprecher, B., Bailey, G., Ge, J., Tukker, A. (2019). Effect of Chinese policies on rare earth supply chain resilience. Resources, Conservation and Recycling, 142, 101–112.
Marion, C., Li, R., Waters, K. E. (2020). A review of reagents applied to rare-earth mineral flotation. Advances in Colloid and Interface Science, 279, 102142.
Matis, K. A., Mavros, P. (1991). Recovery of metals by ion flotation from dilute aqueous solutions. Separation & Purification Reviews, 20(1), 1–48.
Matis, K. A., Zouboulis, A. I. (2001). Flotation techniques in water technology for metals recovery: The impact of speciation. Separation Science and Technology, 36(16), 3777–3800.
Medina, B. Y., Torem, M. L., DeMesquita, L. M. S. (2005). On the kinetics of precipitate flotation of Cr III using sodium dodecylsulfate and ethanol. Minerals Engineering, 18, 225–231.
Micheau, C., Bauduin, P., Diat, O., &Faure, S. (2013). Specific salt and pH effects on foam film of a pH sensitive surfactant. Langmuir, 29(27), 8472–8481.
Miskufova, A., Kochmanova, A., Havlik, T., Horvathova, H., &Kuruc, P. (2018). Leaching of yttrium, europium and accompanying elements from phosphor coatings. Hydrometallurgy, 176, 216–228.
Miyamoto, S. (1960). The Effect of Metallic Ions on Surface Chemical Phenomena. IV. Surface Tension Measurement on Aqueous Solutions of Metal Dodecyl Sulfates. Bulletin of the Chemical Society of Japan, 33(3), 375–379.
Mohammed, A. A., Ebrahim, S. E., Alwared, A. I. (2013). Flotation and sorptive-flotation methods for removal of lead ions from wastewater using SDS as surfactant and barley husk as biosorbent. Chemistry, 2013.
Muhammad, M. T., Khan, M. N. (2018). Eco-friendly, biodegradable natural surfactant (Acacia Concinna): An alternative to the synthetic surfactants. Cleaner Production, 188, 678–685.
Neugebauer, J. M. (1990). Detergents: An overview. Methods in Enzymology, 182(C), 239–253.
Nicol, S. K., Galvin, K. P., Engel, M. D. (1992). Ion flotation - potential applications to mineral processing. Minerals Engineering, 5(10–12), 1259–1275.
Niraula, T. P., Chatterjee, S. K., Bhattarai, A. (2018). Micellization of sodium dodecyl sulphate in presence and absence of alkali metal halides at different temperatures in water and methanol-water mixtures. Journal of Molecular Liquids, 250, 287–294.
Oliveira, A. C. (2020). Influence of the pH regulator on the dolomite hydrophobization process. REM, International Engineering Journal. 73(3), 403–409.
Orhanović, Z., Pokrić, B., Branica, M., Furedi, H. (1966). Precipitation and Hydrolysis of Metallic Ions. III. Studies on the Solubility of Yttrium and Some Rare Earth Hydroxides. Croatica Chemica Acta, 38(4), 269–276.
Otsuki, A., Dodbiba, G., Fujita, T. (2007). Two-liquid flotation: Heterocoagulation of fine particles in polar organic solvent. Materials Transactions, 48(5), 1095–1104.
Otto, R., Wojtalewicz-kasprzak, A. (2009). Method for recovery of rare earths from fluorescent lamps. United States Patent No. US 2009/0162267.
Paria, S., Khilar, K. C. (2004). A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Advances in Colloid and Interface Science, 110(3), 75–95.
Parkhurst, D. L., Appelo, C. A. J. (1999). User’s guide to PHREEQC (ver 2) - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. 2, 54. U.S. Geological Survey
Pashley, R. M., Craig, V. S. (1997). Effects of Electrolytes on Bubble Coalescence. Nature, 30(7), 4772–4774.
Peleka, E. N., Gallios, G. P., Matis, K. A. (2018). A perspective on flotation: a review. Journal of Chemical Technology and Biotechnology, 93(3), 615–623.
Peng, F. F., Di, P. (1994). Removal of Arsenic from Aqueous Solution by Adsorbing Colloid Flotation. Industrial and Engineering Chemistry Research, 33(4), 922–928.
Pereao, O., Bode-Aluko, C., Fatoba, O., Laatikainen, K., Petrik, L. (2018). Rare earth elements removal techniques from water/wastewater: A review. Desalination and Water Treatment, 130, 71–86.
Petrović, D., Jakovljević, I., Joksović, L., Szecsenyi, K. M., Durdević, P. (2016). Study of the hydrolytic properties of the trivalent Y-ion in chloride medium. Polyhedron, 105, 1–11.
Pharr, D. Y. (2019). Green analytical chemistry - The use of surfactants as a replacement of organic solvents in spectroscopy. Physical Sciences Reviews, 2(7), 1–25.
Polat, H., Erdogan, D. (2007). Heavy metal removal from waste waters by ion flotation. Journal of Hazardous Materials, 148(1–2), 267–273.
Polat, M., Chander, S. (2000). First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. International Journal of Mineral Processing, 58(1–4), 145–166.
Porob, D. G., Srivistava, A. M., Nammalwar, P. K., Ramachandran, G. C., Comanzo, H. A. (2012). Rare earth recovery from fluorescent material and associated method, United States Patent No. US8137645B2. 2(12).
Rabah, M. A. (2008). Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps. Waste Management, 28(2), 318–325.
Rahman, A., Brown, C. W. (1983). Effect of pH on the critical micelle concentration of sodium dodecyl sulphate. Journal of Applied Polymer Science, 28(4), 1331–1334.
Rao, K. H., Dwari, R. K., Lu, S., Vilinska, A., Somasundaran, P. (2014). Mixed Anionic/Non-Ionic Collectors in Phosphate Gangue Flotation from Magnetite Fines. The Open Mineral Processing Journal, 4(1), 14–24.
Reis, A. S., Barrozo, M. A. S. (2016). A study on bubble formation and its relation with the performance of apatite flotation. Separation and Purification Technology, 161, 112–120.
Resende, L.V., Morais, C. A. (2010). Study of the recovery of rare earth elements from computer monitor scraps - Leaching experiments. Minerals Engineering, 23(3), 277–280.
Rosen, M. J., Kunjappu, J. T. (2012). Surfactants and Interfacial Phenomena. John Wiley & Sons
Rosita, W., Bendiyasa, I. M., Perdana, I., Anggara, F. (2020). Recovery of rare earth elements and Yttrium from Indonesia coal fly ash using sulphuric acid leaching. AIP Conference Proceedings, 2223.
Rubio, J., Souza, M. L., Smith, R. W. (2002). Overview of flotation as a wastewater treatment technique. Minerals Engineering, 15, 139–155.
Salager, J. L. (2002). Surfactants-Types and Uses. In FIRP Booklet # 300A. 2.
Samanta, S., Ghosh, P. (2011). Coalescence of bubbles and stability of foams in aqueous solutions of Tween surfactants. Chemical Engineering Research and Design, 89(11), 2344–2355.
Santana, R. C., Ribeiro, J. A., Santos, M. A., Reis, A. S., Ataíde, C. H., Barrozo, M. A. S. (2012). Flotation of fine apatitic ore using microbubbles. Separation and Purification Technology, 98, 402–409.
Santoso, S. P., Angkawijaya, A. E., Ismadji, S., Ayucitra, A., Soetaredjo, F. E., Lan, T. N. P., Ju, Y. H. (2016). Complex Formation Study of Binary and Ternary Complexes Including 2,3-Dihydroxybenzoic Acid, N-acetylcysteine and Divalent Metal Ions. Journal of Solution Chemistry, 45(4), 518–533.
Schijf, J., Byrne, R. H. (1999). Determination of stability constants for the mono- and difluoro-complexes of Y and the REE, using a cation-exchange resin and ICP-MS. Polyhedron, 18(22), 2839–2844.
Schijf, J., Byrne, R. H. (2004). Determination of SO4β1 for yttrium and the rare earth elements at I = 0.66 m and t = 25°C-implications for YREE solution speciation in sulfate-rich waters. Geochimica et Cosmochimica Acta, 68(13), 2825–2837.
Shakir, K., Sohsah, M., Soliman, M. (2007). Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation. Separation and Purification Technology, 54(3), 373–381.
Shimizu, R., Sawada, K., Enokida, Y., Yamamoto, I. (2005). Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps. Journal of Supercritical Fluids, 33(3), 235–241.
Singh, D. K., Anitha, M., Yadav, K. K., Kotekar, M. K., Vijayalakshmi, R., Singh, H. (2012). Simultaneous recovery of yttrium and uranium using D2EHPA–TBP and DNPPA–TOPO from phosphoric acid. Desalination and Water Treatment, 38(1–3), 292–300.
Singhal, S. C. (2000). Advances in solid oxide fuel cell technology. Solid State Ionics, 135(1–4), 305–313.
Smith, A. M., Lee, A. A., Perkin, S. (2016). The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. Journal of Physical Chemistry Letters, 7(12), 2157–2163.
Sobhy, A., Tao, D. (2013). Nanobubble column flotation of fine coal particles and associated fundamentals. International Journal of Mineral Processing, 124, 109–116.
Soliman, M. A., Rashad, G. M., Mahmoud, M. R. (2015). Kinetics of ion flotation of Co(II)-EDTA complexes from aqueous solutions. Radiochimica Acta, 103(9), 643–652.
Spahiu, K., Bruno, J. (1995). Technical report 95-35: A selected thermodyanmic database for REE to be used in HLNW performance assessment exeercises. January, 1–80.
Swain, N., Mishra, S. (2019). A review on the recovery and separation of rare earths and transition metals from secondary resources. Journal of Cleaner Production, 220, 884–898.
Takahashi, T., Takano, A., Saitoh, T., Nagano, N., Hirai, S., Shimakage, K. (2001). Separation and Recovery of Rare Earth Elements from Phosphor Sludge in Processing Plant of Waste Fluorescent Lamp by Pneumatic Classification and Sulfuric Acidic Leaching. Shigen-to-Sozai, 117(7), 579–585.
Tapia, M. J., Burrows, H. D., Azenha, M. E. D. G., DaGraça Miguel, M., Pais, A. A. C. C., Sarraguça, J. M. G. (2002). Cation association with sodium dodecyl sulfate micelles as seen by lanthanide luminescence. Journal of Physical Chemistry B, 106(27), 6966–6972.
Thanh, L. H. V., Liu, J. C. (2014). Flotation separation of soluble and colloidal indium from aqueous solution. Industrial and Engineering Chemistry Research, 53(3), 1242–1248.
Tiller, G. E., Mueller, T. J., Dockter, M. E., Struve, W. G. (1984). Hydrogenation of Triton X-100 eliminates its fluorescence and ultraviolet light absorption while preserving its detergent properties. Analytical Biochemistry, 141(1), 262–266.
Tolba, A. A., Mohamady, S. I., Hussin, S. S., Akashi, T., Sakai, Y., Galhoum, A. A., Guibal, E. (2017). Synthesis and characterization of poly(carboxymethyl)-cellulose for enhanced La(III) sorption. Carbohydrate Polymers, 157, 1809–1820.
Tunsu, C., Petranikova, M., Ekberg, C., Retegan, T. (2016). A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Separation and Purification Technology, 161, 172–186.
Tunsu, C., Petranikova, M., Gergorić, M., Ekberg, C., Retegan, T. (2015). Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy, 156, 239–258.
Vraspir, J. M., Butler, A. (2009). Chemistry of marine ligands and siderophores. Annual Review of Marine Science, 1, 43–63.
Wang, G., Nguyen, A.V., Mitra, S., Joshi, J. B., Jameson, G. J., Evans, G. M. (2016). A review of the mechanisms and models of bubble-particle detachment in froth flotation. Separation and Purification Technology, 170, 155–172.
Wills, B. A., Finch, J. A. (2015). Wills’ Mineral Processing Technology. In Wills’ Mineral Processing Technology. Elsevier Inc.
Wood, S. A. (1990). The aqueous geochemistry of the rare-earth elements and yttrium. 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chemical Geology, 88(1–2), 99–125.
Wu, S., Wang, L., Zhang, P., El-shall, H., Moudgil, B., Huang, X., Zhao, L., Zhang, L., Feng, Z. (2018). Hydrometallurgy Simultaneous recovery of rare earths and uranium from wet process phosphoric acid using solvent extraction with D2EHPA. Hydrometallurgy, 175, 109–116.
Xiang, W., Tardy, B., Bai, L., Stubenrauch, C., Rojas, O. J. (2019). Measuring the Interfacial Behavior of Sugar-Based Surfactants to Link Molecular Structure and Uses. In Biobased Surfactants (Second Edi). Elsevier Inc.
Yang, F., Kubota, F., Baba, Y., Kamiya, N., Goto, M. (2013). Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Journal of Hazardous Materials, 254–255(1), 79–88.
Yin, X., Wu, Y., Tian, X., Yu, J., Zhang, Y. N., Zuo, T. (2016). Green Recovery of Rare Earths from Waste Cathode Ray Tube Phosphors: Oxidative Leaching and Kinetic Aspects. ACS Sustainable Chemistry and Engineering, 4(12), 7080–7089.
Yoon, H. S., Kim, C. J., Chung, K. W., Lee, J. Y., Shin, S. M., Lee, S. J., Joe, A. R., Lee, S.Il, Yoo, S. J. (2014). Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore. Korean Journal of Chemical Engineering, 31(10), 1766–1772.
Zamboulis, D., Peleka, E. N., Lazaridis, N. K., Matis, K. A. (2011). Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. Journal of Chemical Technology and Biotechnology, 86, 335–344.
Zhang, L., Xu, Z. (2016). A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, 127, 19–36.
Zhang, S. G., Yang, M., Liu, H., Pan, D. A., Tian, J. J. (2013). Recovery of waste rare earth fluorescent powders by two steps acid leaching. Rare Metals, 32(6), 609–615.
Zouboulis, A. I., Matis, K. A., Stalidis, G. A. (1990). Parameters influencing flotation in removal of metal ions. International Journal of Environmental Studies, 35(3), 183–196.
Zouboulis, A. I., Jun, W., Katsoyiannis, I. A. (2003). Removal of humic acids by flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 231(1–3), 181–193.
Zouboulis, A. I., Maris, K. A. (1995). Removal of cadmium from dilute solutions by flotation. Water Science and Technology, 31(3–4), 315–326.

QR CODE