簡易檢索 / 詳目顯示

研究生: 黃柏翰
Bo - Han Huang
論文名稱: 以環氧樹脂研磨盤研究磨料粒徑及不同研磨機制之效應
Study on the Effect of Abrasive Sizes and Abrasive Machining Mechanisms using Epoxy Resin Pads
指導教授: 鍾俊輝
Chun Hui Chung
口試委員: 郭俊良
Chun Liang Kuo
劉孟昆
Meng Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 130
中文關鍵詞: 環氧樹脂研磨盤固定磨料加工游離磨料加工磨料粒徑
外文關鍵詞: Epoxy resin lapping pad, Bonded abrasive machining, Free abrasive machining, abrasive size
相關次數: 點閱:165下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文欲探討磨料粒徑在不同研磨機制下,加工不同材料所造成之影響,故接續本實驗室先前完成之粒徑14μm氧化鋁研磨實驗,以環氧樹脂為研磨盤之基材,並與先前研磨實驗相同克重數及相同表面顆粒數之比例,添加粒徑4μm氧化鋁磨料,以熱壓技術製成研磨盤,並對延性材料與脆性材料以不同負荷及磨料濃度分別進行固定磨料加工(Bonded abrasive mmachining)及游離磨料加工(Free abrasive mmachining)。觀察材料移除量、磨削力比、表面粗糙度及次表面破壞,比較結果與差異。由實驗結果得知,以小粒徑磨料研磨延性材料,在表面顆粒數多之情況下,所獲得之表面粗糙度值,無論在何種研磨機制下,均低於大粒徑磨料。而研磨脆性材料,則需在游離磨料加工機制下,才可獲得較低之表面粗糙度。大粒徑磨料有較好的材料移除能力,但對於脆性材料會造成較深的次表面破壞。


    In this study, the experiments have been conducted with identical parameters to compare two sizes of abrasive particle on different abrasive machining mechanisms. Epoxy resin pad was utilized to machine S45C carbon steel and quartz, which are ductile and brittle materials, respectively. The results of material removal, grinding force ratio, surface roughness, sub-surface damage with different loads are presented in this thesis.The surface roughness of ductile materials machined by the small size abrasive is better than by the large size abrasive, within any abrasive machining mechanisms,according to the experiment results. On the other side, the surface roughness of britlle materails revealed with free abrasive machining by the small size abrasive cotntributes better surface finish.In addition,machining ductile and brittle materials by the large size abrasive contributes higher material removal rate.

    摘要 I ABSTRACT II 致謝 III 目錄 VI 表索引 VII 圖索引 VIII 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 2 1.3 論文架構 3 第2章 文獻回顧 4 2.1 研磨盤 4 2.2 磨料加工 5 2.3 硬脆材料研磨機制 7 2.4 磨料粒徑 7 第3章 實驗方法與設備 9 3.1 環氧樹脂複合研磨盤製作 11 3.1.1 研磨盤製作步驟 11 3.1.2 研磨盤成分與製作設備 13 3.1.3 漿料濃度換算 17 3.1.4 不同磨料粒徑之單位面積顆粒數換算 20 3.1.5 研磨盤成品 22 3.2 研磨實驗 24 3.2.1 研磨實驗步驟 24 3.2.2 研磨實驗及實驗原理 27 3.2.3 實驗設備及試片 30 3.3 實驗結果量測 34 3.3.1 試片移除量與研磨盤磨耗量 34 3.3.2 表面形貌與次表面破壞觀測 34 第4章 實驗結果與討論 36 4.1 S45C碳鋼試片研磨實驗結果 36 4.1.1 不同負荷下S45C碳鋼研磨分析 36 4.1.2 不同負荷下S45C碳鋼磨削力比分析 39 4.1.3 不同負荷下S45C碳鋼表面粗糙度分析 46 4.1.4 S45C碳鋼試片研磨結果總整理 57 4.2 石英試片研磨實驗結果 58 4.2.1 不同負荷下石英研磨分析 58 4.2.2 不同負荷下石英磨削力比分析 60 4.2.3 不同負荷下石英表面粗糙度分析 67 4.2.4 不同負荷下次表面破壞分析 78 4.2.5 石英試片研磨結果整理 87 4.3 研磨盤損耗分析 89 4.3.1 S45C碳鋼試片研磨對研磨盤之影響 89 4.3.2 石英試片研磨對研磨盤之影響 93 第5章 結論 97 參考文獻 99 附錄A固定磨料加工機制-表面粗糙度量測結果 101 附錄B游離磨料加工機制-表面粗糙度量測結果 109 附錄C固定磨料加工機制-材料移除量測結果 118 附錄D游離磨料加工機制-材料移除量測結果 120 附錄E固定磨料加工機制-研磨盤磨耗量測結果 123 附錄F游離磨料加工機制-研磨盤磨耗量測結果 125 附錄G 氧化鋁粒徑分析表 128 附錄H 環氧樹脂化學性質表 129

    [1]王佳勳,以環氧樹酯研磨盤研究不同磨粒加工機制於硬脆材料與言行材料,碩士論文,國立台灣科技大學機械工程研究所,台北,台灣,2014。
    [2]Lam-Plan S.A, 2005, "Lapping and Polishing Device," United States Patent, NO.6837780 B1.
    [3]Struers A/S, 2000, "Grinding/Polishing Cover Sheet for Placing on A Rotatable Grinding/Polishing Disk," United States Patent, NO. 6019672.
    [4]Gagliardi, J.J., 1999, "An Introduction to Fixed Abrasive CMP," Semiconductor CMP group, 3M abrasive system division.
    [5]Enomoto, T., Satake, U., Fujita, T., Sugihara, T., 2013, "Spiral-structured Fixed-Abrasive Pads for Glass Finishing," CIRP Annals -Manufacturing Technology, 62, Issue 1, pp. 413-416.
    [6]Buijs, M., 1993, "A Model for Lapping of Glass," Journal of Materials Science, 28, pp. 3014-3020.
    [7]Park, J., Juno, K., Yoshida, K., Kinoshita, M., 2008, "Pad Surface Treatment to Control Performance of Chemical Mechanical Planarization," The Japan Society of Applied Physics, 47, No. 2, pp. 1028-1033.
    [8]Skomedal, G., Ovrelid, E.J., Armada, S., Espallargas, N., 2011, "Effect of Slurry Parameters on Material Removal Rate in Multi-wire Sawing of Silicon Wafers: A Tribological Approach," Proceedings of the Institution of Mechanical Engineers, Part J : Journal of Engineering Tribology, 225, pp. 1023-1035.
    [9]林明智,化學機械研磨的微觀機制探討,碩士論文,國立中央大學化學工程研究所,桃園,台灣,2000。
    [10]柯閎仁,熱熔膠研磨墊的開發及其對矽晶圓研磨效果之研究,碩士論文,國立中央大學機械工程研究所,桃園,台灣,2009。
    [11]Zum Gahr, K.H., 1987, Microstructure and Wear of Material, Elsevier, North-holland.
    [12]Williams, J.A., Hyncica, A.M., 1992, "Mechanisms of Abrasive Wear in Lubricated Contacts," Wear, 152, pp. 57-74.
    [13]Moller, J.H., 2004, "Basic Mechanisms and Models of Multi-wire Sawing," Advanced Engineering Materials, 6, pp. 501-513.
    [14]Buijs, M., Houten, K., 1993, "Three-Body Abrasion of Brittle Materials as Studied by Lapping," Wear, 166, pp. 237-245.
    [15]Young, H.T., Liao, H.T., Huang, H.Y., 2006, "Surface Integrity of Silicon Wafers in Ultra Precision Machining," The International Journal of Advanced Manufacturing Technology, 29, pp. 372-378.
    [16]Neauport, J., Destribats, J., Maunier, C., Ambard, C., Cormont, P., Pintault, B., Rondeau, O., 2010, "Loose Abrasive Slurries for Optical Glass Lapping," Optical Society of America - APPLIED OPTICS, 49, No. 30, pp. 5736-5745.
    [17]Pei, Z.J., Billingsley, S.R., 1999, " Grinding induced subsurface cracks in silicon wafers," International Journal of Machine Tools & Manufacture, 39, pp. 1103-1116.
    [18]Palla, B.J., Shah, D.O., 1999, " Correlation of Observed Stability and Polishing Performance to Abrasive Particle Size for CMP, " IEEE/SEMI Advanced Semiconductor Manufacturing Coference, Austin, U.S.A, pp362-369.
    [19]Su, Y.T., Kao, Y.C., 1999, "An experimental study on machining rate distribution of hydronamic polishing process, " Wear, 224, pp. 95-105.
    [20]Imanaka, O., 1966, "Lapping Mechanisms of Glass—Especially on Roughness of Lapped Surface," CIRP Annals - Manufacturing Technology, 13, pp. 227-233.
    [21]Bloembergen, N., 1973, "Role of Cracks, Pores, and Absorbing Inclusions on Laser Damage Threshold at Surface of Transparent Dielectric," Optical Society of America-APPLIED OPTICS, 12, No. 4, pp. 661-664.
    [22]Genin, F.Y., Salleo, A., Pistor, T.V., Chase, L.L., 2001, "Role of Light Intensification by Cracks in Optical Breakdown on Surfaces," Journal of the Optical Society of America A: Optics and Image Science, and Vision, 18, No. 10, pp. 2607-2616.
    [23]Feit, M.D., Rubenchik, A.M., 2004, "Influence of Sub-surface Cracks on Laser Induced Surface Damage," Proceedings of SPIE -The International Society for Optical Engineering, 5273, pp. 264-272.
    [24]Bercegol, H., Grua, P., Hébert, D., Morreeuw, J.P., 2008, " Progress in The Understanding of Fracture Related Damage of Fused Silica," Proceedings of 39th Annual Symposium on Optical Materials for High-Power Lasers, Sep. 24-26, Colorado, U.S.A .
    [25]彭凱奇,二氧化鈦奈米粉末於高分子鑽石複合研磨盤之研磨性能研究,碩士論文,國立台灣科技大學機械工程研究所,台北,台灣,2013。
    [26]劉佳顯,硬脆材料硬拋光與軟拋光機制分析及最佳參數設計,碩士論文,國立高雄第一科技大學機械與自動化工程研究所,高雄,台灣,2003。

    QR CODE