簡易檢索 / 詳目顯示

研究生: 李孟哲
Meng-Che Li
論文名稱: 非水溶性藍藻蛋白-寡糖與醛類接枝之物性探討
Physical characterization of insoluble cyanophycinoligosaccharide and -aldehyde conjugates
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 陳秀美
Hsiu-Mei Chen
毛慶豐
C.F. Mao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 86
中文關鍵詞: 非水溶性藍藻蛋白寡糖
外文關鍵詞: insoluble cyanophycin, oligosaccharide
相關次數: 點閱:302下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

藍藻蛋白(cyanophycin)是一種非核糖體合成的胺基酸聚合物,可以在大部分的藍綠藻菌(cyanobacteria)及少部分異營細菌(heterotrophic bacteria)中發現。由於天然的藍藻蛋白之結構缺少了離胺酸(lysine),經基因重組後結構則以天門冬胺酸(aspartic acid)為主鏈,精氨酸(arginine)及離胺酸(lysine)為側鏈組成,而離氨酸上之一級胺則使其較容易進行化學修飾。
因此本研究嘗試以非水溶性藍藻蛋白(water-insoluble cyanophycin, inCGP),與不同醣類、不同碳數醛類進行接枝改質,期望改變非水溶性藍藻蛋白分子內電荷吸引力與氫鍵數量,希望改質後的產物可有效提升其應用性。改質後的產物,經溶解度測試,觀察改質後的產物對不同溫度及酸鹼值之應答。物性測定包括紫外/可見光分光光譜儀(UV Vis spectroscopy)、傅立葉轉換紅外線光譜儀(fourier transform infrared spectroscopy , FT -IR)、粒徑分析儀(dynamic light scattering, DLS)、穿透式電子顯微鏡(transmission electron microscopy , TEM)。
改質後的非水溶性藍藻蛋白,其相轉變行受到許多因素影響,如濃度、酸鹼值、分子量等。尤其是酸鹼值對相轉變之溫度的影響,當酸鹼值降低,由於分子間的氫建強烈相互作用,最高臨界溶解溫度(upper critical solution temperature, UCST)皆有顯著的提升,實現本實驗的主要研究目標。


Cyanophycin is a non-ribosomal polypeptide that can be found in most
cyanobacteria and some heterotrophic bacteria. The structure of natural
cyanophycin lacks lysine, and after the genetic recombination, it contains
aspartic acid as the main chain, and arginine and lysine as the side chain. The
primary amine on lysine makes it easy for chemical modification.
This study tried to graft water-insoluble cyanophycin with different
oligosaccharides and aldehydes in order to change the attraction of hydrogen
bonding. It is expected that such modification can effectively improve its
applications. The study carried out the solubility test of the modified product,
and tried to measure the responses of the conjugates at different pH values.
The measurements of physical properties included UV/Vis spectrometry,
Fourier transform infrared spectrometry, particle size analysis, and
transmission electron microscopy.
Phase transition of the water-insoluble cyanophycin after modification
is affected by many factors, such as concentrations, pH values and molecular
weights, especially the effect of pH values. When the pH value decreased,
the highest critical solution temperature got a rise due to the increased
interactions of the inter-molecular hydrogen bonding.

目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 第一章 緒論 1 第二章 文獻回顧 3 2.1刺激應答型高分子 3 2.1.1溫度應答型高分子 3 2.1.2酸鹼應答型高分子 7 2.1.3臨界聚集濃度 8 2.2藍藻蛋白 8 2.2.1藍藻蛋白結構 9 2.2.2藍藻蛋白生產 10 2.2.3藍藻蛋白應用 11 2.3葡萄糖 11 2.3.1葡萄糖結構 11 2.3.2葡萄糖生產 12 2.3.3葡萄糖應用 12 2.4麥芽糖 12 2.4.1麥芽糖結構 13 2.4.2麥芽糖生產 13 2.4.3麥芽糖應用 14 2.5麥芽三糖 14 2.5.1麥芽三糖結構 14 2.5.2麥芽三糖生產 15 2.5.3麥芽三糖應用 15 2.6麥芽糊精 15 2.6.1麥芽糊精結構 16 2.6.2麥芽糊精生產 16 2.6.3麥芽糊精應用 16 2.7 葡聚糖 17 2.7.1葡聚糖結構 17 2.7.2葡聚糖生產 17 2.7.3葡聚糖應用 18 2.8丁醛 18 2.8.1丁醛結構 18 2.8.2丁醛生產 19 2.8.3丁醛應用 19 2.9己醛 19 2.9.1己醛結構 20 2.9.2己醛生產 20 2.9.3己醛應用 20 第三章 實驗材料與方法 22 3.1 實驗材料 22 3.1.1菌株 22 3.2.1實驗藥品 22 3.2藥品配置 25 3.2.1藍藻蛋白生產 25 3.2.2聚丙烯醯胺膠體電泳 27 3.2.3非水溶性藍藻蛋白與醣類及醛類接枝反應 29 3.2.4非水溶性藍藻蛋白-醣類與醛類物性測試 30 3.2.5非水溶性藍藻蛋白與醣類及醛類接枝TEM 30 3.2.6 DNA瓊脂糖凝膠電泳 31 3.3實驗儀器 32 3.4實驗步驟 34 3.4.1藍藻蛋白生產 34 3.4.2藍藻蛋白純化 36 3.4.3以SDS-PAGE分析藍藻蛋白生產情形與純化後之純度 38 3.4.4質體核酸之製備與純化 39 3.4.5非水溶性藍藻蛋白與醣類及醛類接枝反應 42 3.4.7非水溶性藍藻蛋白與醣類及醛類接枝官能基鑑定 45 3.4.8非水溶性藍藻蛋白與醣類及醛類接枝物相轉變分析 46 3.4.9非水溶性藍藻蛋白與醣類及醛類接枝粒徑分析 46 3.4.10非水溶性藍藻蛋白與醣類及醛類接枝TEM 47 3.4.11非水溶性藍藻蛋白對質體核酸包覆與釋放測試 48 第四章 實驗結果 50 4.1官能基鑑定 50 4.1.1非水溶性藍藻蛋白與醣類接枝官能基鑑定 50 4.1.2非水溶性藍藻蛋白與醛類接枝官能基鑑定 52 4.2 UCST相轉變行為分析 54 4.2.1非水溶性藍藻蛋白與醣類接枝之溫度-濃度相圖 54 4.2.2非水溶性藍藻蛋白與醛類接枝之溫度-濃度相圖 55 4.2.3非水溶性藍藻蛋白與醣類接枝之溫度應答 56 4.2.4非水溶性藍藻蛋白與醛類接枝之溫度應答 58 4.2.5非水溶性藍藻蛋白與醣類接枝之酸鹼應答 59 4.2.6非水溶性藍藻蛋白與醣類、醛類接枝之遲滯現象 60 4.3粒徑分析 63 4.3.1 非水溶性藍藻蛋白與醣類、醛類水合直徑測量 63 4.3.2 非水溶性藍藻蛋白與其接枝物於TEM下之粒徑 66 第五章 結論 70 參考文獻 71 附錄一 以高效液相層析法分析非水溶性藍藻蛋白之氨基酸組成 77 附錄二 以SDS-PAGE分析藍藻蛋白分子量 78 附錄三 非水溶性藍藻蛋白-醣類接枝於不同濃度、pH=3之溫度應答 79 附錄四 非水溶性藍藻蛋白-醛類接枝於不同濃度、pH=3之溫度應答 82 附錄五 非水溶性藍藻蛋白與其接枝物於pH=3之粒徑分布 83 附錄六 非水溶性藍藻蛋白對質體核酸包覆與釋放測試 86

1. Rahikkala, A., et al., Thermoresponsive Nanoparticles of Self-Assembled Block Copolymers as Potential Carriers for Drug Delivery and Diagnostics. Biomacromolecules, 2015. 16(9): p. 2750-2756.
2. Reineke, T.M., Stimuli-Responsive Polymers for Biological Detection and Delivery. ACS Macro Letters, 2016. 5(1): p. 14-18.
3. Hoffman, A.S., “Intelligent” Polymers in Medicine and Biotechnology. Artificial Organs, 1995. 19(5): p. 458-467.
4. Charlet, R.D., and G. Delmas., Thermodynamic properties of polyolefin solutions at high temperature: 2. Lower critical solubility temperatures for polybutene-1, polypentene-1 and poly(4-methylpentene-1) in hydrocarbon solvents and determination of the polymer-solvent. Polymer, 1981(22): p. 1190-1198.
5. Charlet, G.D., Thermodynamic properties of polyolefin solutions at high temperature: 2. Lower critical solubility temperatures for polybutene-1, polypentene-1 and poly(4-methylpentene-1) in hydrocarbon solvents and determination of the polymer-solvent. Polymer, 1981(22): p. 1181-1189.
6. Lu, F., et al., Synthesis of Thermo-Sensitive Nanocapsules via Inverse Miniemulsion Polymerization Using a PEO−RAFT Agent. Macromolecules, 2010. 43(1): p. 568-571.
7. Cao, Z., et al., Preparation and properties of thermo-sensitive organic/inorganic hybrid microgels. Langmuir, 2008. 24(22): p. 12771-8.
8. Fu, H., et al., Parallel effects of cations on PNIPAM graft wettability and PNIPAM solubility. ACS Appl Mater Interfaces, 2010. 2(2): p. 452-458.
9. Hellweg, T., et al., PNIPAM-co-polystyrene Core−Shell Microgels: Structure, Swelling Behavior, and Crystallization. Langmuir, 2004. 20(11): p. 4330-4335.
10. Plunkett, K.N., et al., PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir, 2006. 22(9): p. 4259-4266.
11. Okhapkin, I.M., E.E. Makhaeva, and A.R. Khokhlov, Water Solutions of Amphiphilic Polymers: Nanostructure Formation and Possibilities for Catalysis. Advances in Polymer Science, 2006. 195: p. 177-210.
12. Zhang, G. and C. Wu, Folding and Formation of Mesoglobules in Dilute Copolymer Solutions. Advances in Polymer Science, 2006. 195: p. 101-176.
13. Dobrynin, A.V., R.H. Colby, and M. Rubinstein, Polyampholytes. Journal of Polymer Science Part B: Polymer Physics, 2004. 42(19): p. 3513-3538.
14. Flory, P.J., Thermodynamics of High Polymer Solutions. The Journal of Chemical Physics, 1942. 10(1): p. 51-61.
15. Huggins, M.L., Solutions of Long Chain Compounds. The Journal of Chemical Physics, 1941. 9(5): p. 440.
16. Zhang, Q. and R. Hoogenboom, Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Progress in Polymer Science, 2015. 48: p. 122-142.
17. Fujihara, A., et al., Preparation of upper critical solution temperature (UCST) responsive diblock copolymers bearing pendant ureido groups and their micelle formation behavior in water. Soft Matter, 2015. 11(26): p. 5204-5213.
18. Seuring, J., et al., Upper Critical Solution Temperature of Poly(N-acryloyl glycinamide) in Water: A Concealed Property. Macromolecules, 2012. 45(1): p. 374-384.
19. Kim, B., D. Hong, and W.V. Chang, LCST and UCST double-phase transitions of poly(N-isopropylacrylamide-co-2-acrylamidoglycolic acid)/poly(dimethylaminoethyl methacrylate) complex. Colloid and Polymer Science, 2014. 293(3): p. 699-708.
20. Roth, P.J., T.P. Davis, and A.B. Lowe, UCST-driven self-assembly and crosslinking of diblock copolymer micelles. Polymer Chemistry, 2012. 3(8): p. 2228.
21. Seuring, J. and S. Agarwal, Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun, 2012. 33(22): p. 1898-920.
22. Mishra, V., et al., Thermoresponsive ureido-derivatized polymers: the effect of quaternization on UCST properties. Polymer Chemistry, 2014. 5(7): p. 2411.
23. Sherman, E. and G. Haran, Coil-globule transition in the denatured state of a small protein. Proc Natl Acad Sci U S A, 2006. 103(31): p. 11539-11543.
24. Vasilevskaya, V.V., et al., Collapse of single DNA molecule in poly(ethylene glycol) solutions. The Journal of Chemical Physics, 1995. 102(16): p. 6595.
25. Yin, J., et al., Schizophrenic core-shell microgels: thermoregulated core and shell swelling/collapse by combining UCST and LCST phase transitions. Langmuir, 2014. 30(9): p. 2551-2558.
26. Francis, M.F., et al., In Vitro Evaluation of pH-Sensitive Polymer/Niosome Complexes. Biomacromolecules, 2001. 2(3): p. 741-749.
27. Goldsipe, A. and D. Blankschtein, Molecular-thermodynamic theory of micellization of pH-sensitive surfactants. Langmuir, 2006. 22(8): p. 3547-3559.
28. Simard, P. and J.C. Leroux, In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen. Mol Pharm, 2010. 7(4): p. 1098-1107.
29. Sideratou, Z., D. Tsiourvas, and C.M. Paleos, Quaternized Poly(propylene imine) Dendrimers as Novel pH-Sensitive Controlled-Release Systems. Langmuir, 2000. 16(4): p. 1766-1769.
30. Maji, T., et al., Dual-Stimuli-Responsivel-Serine-Based Zwitterionic UCST-Type Polymer with Tunable Thermosensitivity. Macromolecules, 2015. 48(14): p. 4957-4966.
31. Borzi, A., Le comunicazioni intracellulari delle Nostochinee. Malpighia, 1987. 1: p. 174-203.
32. Dembinska, M.E. and M.M. Allen, Cyanophycin Granule Size Variation in Aphanocapsa. Microbiology, 1988. 134(2): p. 295-298.
33. Mooibroek, H., et al., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol, 2007. 77(2): p. 257-267.
34. Simon, R. and P. Weathers, Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochimica et Biophysica Acta, 1976. 420(1): p. 165-176.
35. Mooibroek, H., et al., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol, 2007. 77(2): p. 257-67.
36. Ziegler, K., et al., Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). Eur J Biochem, 1998. 254(1): p. 154-159.
37. Hannig, G. and S.C. Makrides, Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol, 1998. 16(2): p. 54-60.
38. Aboulmagd, E., F.B. Oppermann-Sanio, and A. Steinbuchel, Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Arch Microbiol, 2000. 174(5): p. 297-306.
39. Sallam, A. and A. Steinbuchel, Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production. Appl Microbiol Biotechnol, 2010. 87(3): p. 815-828.
40. Hudson, C.S., Emil Fischer's discovery of the configuration of glucose. A semicentennial retrospect. Journal of Chemical Education, 1941. 18(8): p. 353.
41. Harrison, F.E. and J.M. May, Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med, 2009. 46(6): p. 719-730.
42. O'Sullivan, C., XXI.—On the transformation-products of starch. J. Chem. Soc., 1872. 25(0): p. 579-588.
43. Quigley, G.J., A. Sarko, and R.H. Marchessault, Crystal and molecular structure of maltose monohydrate. Journal of the American Chemical Society, 1970. 92(20): p. 5834-5839.
44. David, W.B., W.H. John, and J.S. Rhonda, The Basics of General, Organic, and Biological Chemistry. 2011.
45. Posocco, B., et al., Polysaccharides for the Delivery of Antitumor Drugs. Materials, 2015. 8(5): p. 2569-2615.
46. Magalhaes, F., et al., Maltose and maltotriose utilization by Group I strains of the hybrid lager yeast Saccharomyces pastorianus. FEMS Yeast Res, 2016.
47. Rodney, A.R. and R.B. David, Medical Physiology: Principles for Clinical Medicine. 2009.
48. Thompson, A. and M.L. Wolfrom, The Structure of Maltotriose. Journal of the American Chemical Society, 1952. 74(14): p. 3612-3614.
49. Jones, B.J., et al., Glucose absorption from starch hydrolysates in the human jejunum. Gut, 1983. 24(12): p. 1152-1160.
50. Acton, Q.A., Enzymes and Coenzymes: Advances in Research and Application. 2011.
51. Christian, M., C. Edwards, and L. Weaver, Starch digestion in infancy. J Pediatr Gastroenterol Nutr, 1999. 29(2): p. 116-124.
52. Khady., B., D. Jacqueline., and T. Philippe., Hydrolysis of starch by sorghum malt for maltodextrin production. Biotechnologie, agronomie, société et environnement, 2010. 14: p. 537.
53. Monsan, P., et al., Homopolysaccharides from lactic acid bacteria. International Dairy Journal, 2001. 11(9): p. 675-685.
54. Khalikova, E., P. Susi, and T. Korpela, Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol Mol Biol Rev, 2005. 69(2): p. 306-325.
55. Laura, M., et al., Biosynthesis, Purification and Biotechnological Use of Exopolysaccharides Produced by Lactic Acid Bacteria. 2012.
56. Monchois, V., R.M. Willemot, and P. Monsan, Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev, 1999. 23(2): p. 131-51.
57. Sharon, L.L., Medical-Surgical Nursing, 7th Edition. 2007.
58. Panda., H., Handbook On Chemical Industries (Alcohol Based). 2002.
59. Merck Index, 11th Edition. 1591.
60. Cornils, B., R.W. Fischer, and C. Kohlpaintner, Butanals in Ullmann's Encyclopedia of Industrial Chemistry. 2000.
61. Sheldon, R.A., Chemicals from Synthesis Gas: Catalytic Reactions of CO and H2. 1983. 3.
62. Molecule of the Week: Hexanal. American Chemical Society, 2015.
63. Liu, Q. and Y. Hua, Continuous synthesis of hexanal by immobilized hydroperoxide lyase in packed-bed reactor. Bioprocess Biosyst Eng, 2015. 38(12): p. 2439-2449.
64. Azarbad, M.H. and H. Jeleń, Determination of Hexanal—an Indicator of Lipid Oxidation by Static Headspace Gas Chromatography (SHS-GC) in Fat-Rich Food Matrices. Food Analytical Methods, 2014. 8(7): p. 1727-1733.
65. Williams, D.B. and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science. 2009.
66. Bradley, D.E., A study of the negative staining process. J Gen Microbiol, 1962. 29: p. 503-516.
67. Seuring, J. and S. Agarwal, Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun, 2012. 33(22): p. 1898-1920.

無法下載圖示 全文公開日期 2021/08/25 (校內網路)
全文公開日期 2036/08/25 (校外網路)
全文公開日期 2036/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE