簡易檢索 / 詳目顯示

研究生: 艾力亞斯
Elias Gizaw Mernie
論文名稱: 薄層層析線上結合介質輔助雷射游離化法質譜儀於寡醣結構之剖析
Thin-layer Chromatography Coupled with MALDI TOF Mass Spectrometry for Oligosaccharide Profiling
指導教授: 陳良益
Liang-Yih Chen
陳玉如
Yu-Ju Chen
口試委員: 李明哲
Ming-Jer Lee
林俊成
Chun-Cheng Lin
陳玉如
Yu-Ju Chen
曾美郡
Mei-Chun Tseng
陳良益
Liang-Yih Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 147
中文關鍵詞: MALDI-TOF MSOligosaccharidesDHB@MNPsIonic LiquidsTLCScanning
外文關鍵詞: MALDI-TOF MS, Oligosaccharides, DHB@MNPs, Ionic Liquids, TLC, Scanning
相關次數: 點閱:268下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同結構的醣類具有不同的功能性,因此若能深入分析各種醣類的表徵以及結構,有助於了解醣類對於健康以及各種疾病的影響和重要性。儘管使用基質輔助雷射脫附游離法質譜儀可以擁有高靈敏度且快速和高通量分析,由於醣類結構相似性和複雜性較高以及游離化效率較低,導致在偵測上難以分離和鑑定。因此,本實驗主要利用薄層層析分離技術線上結合基質輔助雷射脫附游離法質譜儀,並且藉由離子液體來穩定以及均勻分散奈米粒子基質,以開發可以快速分離和同時鑑定寡糖結構有效的剖析平台。首先,在薄層層析方面選擇合適的展開溶劑以及選擇適合分離寡醣化合物的薄層層析種類。再者,發展奈米基質的沉積方法和找尋適合均勻分散二羥基苯甲酸之磁性奈米基質(DHB@MNP)的溶劑,以達到在薄層層析上,可以一次步驟游離及裂解而能有效率鑑定醣類化合物之結構。第三,找尋薄層層析線上連接基質輔助雷射脫附游離法質譜儀最佳化的收集圖譜的參數。在此實驗中,若要將二羥基苯甲酸之磁性奈米基質(DHB@MNP)旋轉塗佈薄層層析上,須使用離子液體當作溶劑,其可以幫助基質均勻分散在薄層層析上,除了可以提高訊號的再現性(<20%CV)同時又可以增加訊號12和28倍的靈敏度。而相較於正相薄層層析,逆相的薄層層析對醣類混合物可以擁有更好的分離效果以及增加12倍訊號的靈敏度。另外,薄層層析已經將大部分寡醣分離,但是對於同分異構的寡醣卻無法分離,然而在此實驗系統中,利用磁性奈米基質所產生內能轉換而造成醣類生成診斷性的糖苷和交叉環裂解離子,從而能夠及時對每個分離的斑點進行聚醣的組成,序列,分支和連接的結構解析。
    人乳寡糖(HMO)是生物活性成分,可調節嬰兒的免疫功能,並通過建立腸道菌群和免疫系統為新生兒提供多層保護。因此了解寡糖的結構功能,能有助於在人工營養中設計具有抗感染性的新型治療劑。所以在本論文中的第二部分,我們將此開發的平台應用在分析不同供應者在不同泌乳時間寡醣含量及種類的鑑定。相較於傳統耗時的分析方法,例如需要將醣類樣品衍生化,以及將薄層層析顯色或者是使用串聯式質譜儀,本實驗設計的分析平台可以快速鑑定人乳中的25種寡糖。 藉由使用人乳寡醣的相對訊號強度進行定量分析,並且根據熱圖分析顯示,可以得知在不同泌乳時間和各個供應者的樣品中寡糖含量的差異。 在供應者A和B的樣品(5-12天)中觀察到更多更大的寡醣比在供應者E的樣品(12個月)中更高。 這種差異性可以提供有關嬰兒的微生物群和免疫力的相關資訊。 隨著我們樣品製備方法的簡單性以及良好的分離效果和能鑑定的結構表徵,我們的方法可用於含量較低的寡醣樣品的快速篩選。


    The in-depth characterization of glycan structure is crucial to understanding their structure-function relationships and their effects on health and various diseases. Despite advances in rapid analysis, the utility of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is limited for complex mixture of carbohydrates due to their low ionization efficiency and the difficulty in separating oligosaccharides because of their high structural similarity. In the first part of the thesis. We developed an efficient oligosaccharides profiling approach based on ionic liquid (IL)-stabilized, nanomatrix-decorated, thin-layer chromatography (TLC)-MALDI MS for simultaneous and rapid separation, detection and identification of oligosaccharides. First, optimization of TLC developing solvent systems and selection of appropriate plate nature for separation of saccharides mixture. Second, evaluation of nanomatrix deposition methods and an efficient dispersant selection for utilizing dihydroxybenzoic acid-functionalized magnetic nanoparticles (DHB@MNPs) nanomatrix for a single step ionization and fragmentation of carbohydrates directly from the TLC surface. Third, selection and parameter tuning of TLC-MALDI MS coupling methods and spectra acquisition modes. The IL demonstrated good dispersion and stabilization for the spin coating of DHB@MNPs on the TLC plate with spot homogeneity, which contributed to the observed high reproducibility (<20% CV) and 12- and 28-fold signal enhancement. In addition, compared to normal phase (NP) TLC, C18 modified reverse phase (RP)-TLC showed superior separation and 12-fold signal enhancement for mixture carbohydrates. Though the TLC was limited to separate isomeric glycans, the IL-dispersed DHB@MNPs facilitate unique high-energy bond breakage to generate diagnostic glycosidic and cross-ring cleavage ions, enabling unambiguous elucidation of the isomeric pairs of Lewis oligosaccharides. DHB@MNP-assisted fragmentation enables on-spot structural elucidation of composition, sequence, branching, and linkage of glycans in each separated spot.
    Human milk oligosaccharides (HMOs) are bioactive components that modulate the immune function of the infant and give multiple layers of protection for newborn by establishing gut flora and immune system. However, understanding oligosaccharide structure-function is very essential to design a novel therapeutic agents with anti-infection in artificial nutrition. Thus, in the second part of the thesis, this approach was applied to HMO analysis of the samples collected from donors at different lactation times. Without chemical derivatization of glycan samples, glycan visualization by TLC and tandem MS, our integrated platform, allowed the identification of 25 oligosaccharides from human milk. By quantitative analysis using the relative abundance of each HMO, heatmap analysis revealed the variability of the oligosaccharide in samples from individual donors taken at different periods of lactation time. Higher numbers of larger oligosaccharides were observed in the samples from donors A and B (5-12 days) than in that from donor E (12 months). Such variation may provide insight for further study of the microbiota and immunity of infants. With the demonstrated simplicity of our sample preparation method along with the achieved separation and in-depth structural characterization, our approach can be used for the rapid screening of other oligosaccharide-rich samples.

      Table of Contents 中文摘要 i Abstract iii Acknowledgements v List of Symbols and Abbreviations x List of Figures xiii List of Tables xvii Chapter 1. Introduction 1 1.1. Introduction of Carbohydrate 1 1.2. Significance of Carbohydrate and Structural Analysis 2 1.3. Fragmentation of Carbohydrates in Mass Spectrometry for Structure Determination 5 1.4. MALDI MS for Carbohydrate Structural Analysis 7 1.5. TLC Separation of Saccharides Mixture 9 1.6. TLC-MALDI MS for Separation and Detection of Carbohydrates 10 1.7. Mass Spectrometry Analysis of Human Milk Oligosaccharide 12 1.8. Nanoparticle as a MALDI Matrix 16 1.9. Thesis Objectives 18 Chapter 2. Experimental Methods 19 2.1. Material and Reagents 19 2.2. Fabrication DHB Conjugated MNPs 19 2.3. Ionic Liquid Synthesis 21 2.4. Human Milk Oligosaccharide Extraction 22 2.5. TLC Separation and MALDI MS Scanning 23 2.6. MALDI-TOF Mass Spectrometry 24 Chapter 3. Results and Discussion 25 3.1. Experimental Workflow 25 3.2. DHB@MNPs Facilitate Ionization and Fragmentation on the TLC Plate 27 3.2.1. DHB@MNP Induced Fragmentation Pattern and Structure Determination 30 3.3. Spin Coating for Nanomatrix Deposition Method 32 3.4. DHB@MNP Nanomatrix Dispersant Selection 35 3.4.1. Ionic Liquids Provide Homogeneous Dispersion of the DHB@MNP Matrix 36 3.5. Carbohydrate Mixture Separation by TLC 45 3.5.1. Developing Solvent Optimization and Visualization Reagent Selection 45 3.5.2. Comparison of Normal and Reversed phase TLC Plate for Carbohydrate Separation and Detection 48 3.6. Summary of Various Optimization Parameters 52 3.7. Automated Scanning Detection of TLC Separated Spots 55 3.8. Application on Isomeric Oligosaccharides Differentiation 59 3.9. Application on Human milk oligosaccharide (HMO) analysis 63 3.9.1. HMOs Extraction Efficiency Evaluation of Various Cartridges 63 3.9.2. HMO Structure Elucidation Based on Unique Fragmentation Pattern 67 3.9.3. Comparison of TLC Scan Spectra with TOF/TOF Spectra from Conventional MALDI Plate 82 3.9.4. The heatmap of the relative ion intensities of the identified HMOs 85 Chapter 4. Conclusion and Future Perspectives 89 4.1. Conclusion 89 4.2. Future Perspectives 91 References 92 Appendices 110 Curriculum Vitae 121

    (1) Han, L.; Costello, C. E. Mass spectrometry of glycans. Biochemistry (Mosc) 2013, 78, 710-720.
    (2) Rodrigues, J. G.; Balmana, M.; Macedo, J. A.; Pocas, J.; Fernandes, A.; de-Freitas-Junior, J. C. M.; Pinho, S. S.; Gomes, J.; Magalhaes, A.; Gomes, C.; Mereiter, S.; Reis, C. A. Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cellular Immunology 2018, 333, 46-57.
    (3) Pinho, S. S.; Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nature Reviews. Cancer 2015, 15, 540-555.
    (4) Kleene, R.; Schachner, M. Glycans and neural cell interactions. Nature Reviews. Neuroscience 2004, 5, 195-208.
    (5) Varki, A. Biological roles of glycans. Glycobiology 2017, 27, 3-49.
    (6) Lai, Y. H.; Wang, Y. S. Matrix-assisted laser desorption/ionization mass spectrometry: mechanistic studies and methods for improving the structural identification of carbohydrates. Mass Spectrometry 2017, 6, S0072.
    (7) Marth, J. D.; Grewal, P. K. Mammalian glycosylation in immunity. Nature Reviews. Immunology 2008, 8, 874-887.
    (8) Yuriev, E.; Farrugia, W.; Scott, A. M.; Ramsland, P. A. Three-dimensional structures of carbohydrate determinants of Lewis system antigens: implications for effective antibody targeting of cancer. Immunology and Cell Biology 2005, 83, 709-717.
    (9) Varki, A.; Freeze, H. H.; Manzi, A. E. Overview of glycoconjugate analysis. Current Protocols in Protein Science 2009, Chapter 12, Unit 12 11 12 11 11-18.
    (10) Tran, T.; Beal, S. G. Application of the 1,3-β-d-Glucan (Fungitell) assay in the diagnosis of invasive fungal infections. Archives of Pathology & Laboratory Medicine 2016, 140, 181-185.
    (11) Obayashi, T.; Yoshida, M.; Mori, T.; Goto, H.; Yasuoka, A.; Iwasaki, H.; Teshima, H.; Kohno, S.; Horiuchi, A.; Ito, A.; et al. Plasma (1-->3)-beta-D-glucan measurement in diagnosis of invasive deep mycosis and fungal febrile episodes. Lancet 1995, 345, 17-20.
    (12) Ostrosky-Zeichner, L.; Alexander, B. D.; Kett, D. H.; Vazquez, J.; Pappas, P. G.; Saeki, F.; Ketchum, P. A.; Wingard, J.; Schiff, R.; Tamura, H.; Finkelman, M. A.; Rex, J. H. Multicenter clinical evaluation of the (1-->3) beta-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clinical Infectious Diseases 2005, 41, 654-659.
    (13) Wright, W. F.; Overman, S. B.; Ribes, J. A. (1–3)-β-D-Glucan Assay: A Review of its laboratory and clinical application. Laboratory Medicine 2011, 42, 679-685.
    (14) Odabasi, Z.; Mattiuzzi, G.; Estey, E.; Kantarjian, H.; Saeki, F.; Ridge, R. J.; Ketchum, P. A.; Finkelman, M. A.; Rex, J. H.; Ostrosky-Zeichner, L. Beta-D-glucan as a diagnostic adjunct for invasive fungal infections: Validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clinical Infectious Diseases 2004, 39, 199-205.
    (15) Borsig, L. Heparin as an inhibitor of cancer progression. Progress in Molecular Biology and Translational Science 2010, 93, 335-349.
    (16) Lima, M.; Rudd, T.; Yates, E. New Applications of heparin and other glycosaminoglycans. Molecules 2017, 22, 749.
    (17) Yu, R. K.; Tsai, Y.-T.; Ariga, T.; Yanagisawa, M. Structures, biosynthesis, and functions of gangliosides-an overview. Journal of Oleo Science 2011, 60, 537-544.
    (18) Kolter, T. Ganglioside Biochemistry. ISRN Biochemistry 2012, 2012, 36.
    (19) Birkle, S.; Zeng, G.; Gao, L.; Yu, R. K.; Aubry, J. Role of tumor-associated gangliosides in cancer progression. Biochimie 2003, 85, 455-463.
    (20) Wierzbicki, A.; Gil, M.; Ciesielski, M.; Fenstermaker, R. A.; Kaneko, Y.; Rokita, H.; Lau, J. T.; Kozbor, D. Immunization with a mimotope of GD2 ganglioside induces CD8+ T cells that recognize cell adhesion molecules on tumor cells. Journal of Immunology 2008, 181, 6644-6653.
    (21) Navid, F.; Santana, V. M.; Barfield, R. C. Anti-GD2 antibody therapy for GD2-expressing tumors. Current Cancer Drug Targets 2010, 10, 200-209.
    (22) Hashim, Z. M. The significance of CA15-3 in breast cancer patients and its relationship to HER-2 receptor status. International Journal of Immunopathology and Pharmacology 2014, 27, 45-51.
    (23) Ebeling, F. G.; Stieber, P.; Untch, M.; Nagel, D.; Konecny, G. E.; Schmitt, U. M.; Fateh-Moghadam, A.; Seidel, D. Serum CEA and CA 15-3 as prognostic factors in primary breast cancer. British Journal of Cancer 2002, 86, 1217-1222.
    (24) Fejzic, H.; Mujagic, S.; Azabagic, S.; Burina, M. Tumor marker CA 15-3 in breast cancer patients. Acta Medica Academica 2015, 44, 39-46.
    (25) Fuzery, A. K.; Levin, J.; Chan, M. M.; Chan, D. W. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clinical Proteomics 2013, 10, 13.
    (26) Xing, H.; Wang, J.; Wang, Y.; Tong, M.; Hu, H.; Huang, C.; Li, D. Diagnostic value of CA 19-9 and carcinoembryonic antigen for pancreatic cancer: A meta-analysis. Gastroenterology Research and Practice 2018, 2018, 9.
    (27) Partyka, K.; Maupin, K. A.; Brand, R. E.; Haab, B. B. Diverse monoclonal antibodies against the CA 19-9 antigen show variation in binding specificity with consequences for clinical interpretation. Proteomics 2012, 12, 2212-2220.
    (28) Pavai, S.; Yap, S. F. The clinical significance of elevated levels of serum CA 19-9. The Medical Journal of Malaysia 2003, 58, 667-672.
    (29) Perkins, G. L.; Slater, E. D.; Sanders, G. K.; Prichard, J. G. Serum tumor markers. American Family Physician 2003, 68, 1075-1082.
    (30) Duraisamy, S.; Ramasamy, S.; Kharbanda, S.; Kufe, D. Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 AND MUC16. Gene 2006, 373, 28-34.
    (31) Yin, B. W.; Lloyd, K. O. Molecular cloning of the CA125 ovarian cancer antigen: identification as a new mucin, MUC16. The Journal of Biological Chemistry 2001, 276, 27371-27375.
    (32) Sevinc, A.; Adli, M.; Kalender, M. E.; Camci, C. Benign causes of increased serum CA-125 concentration. The Lancet. Oncology 2007, 8, 1054-1055.
    (33) Campbell, M. P.; Royle, L.; Radcliffe, C. M.; Dwek, R. A.; Rudd, P. M. GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics 2008, 24, 1214-1216.
    (34) Harvey, D. J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999-2000. Mass Spectrometry Reviews 2006, 25, 595-662.
    (35) Lattova, E.; Perreault, H.; Krokhin, O. Matrix-assisted laser desorption/ionization tandem mass spectrometry and post-source decay fragmentation study of phenylhydrazones of N-linked oligosaccharides from ovalbumin. Journal of the American Society for Mass Spectrometry 2004, 15, 725-735.
    (36) Liang, Q.; Macher, T.; Xu, Y.; Bao, Y.; Cassady, C. J. MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Analytical Chemistry 2014, 86, 8496-8503.
    (37) Zaia, J. Mass spectrometry and glycomics. OMICS: A Journal of Integrative Biology 2010, 14, 401-418.
    (38) Sheeley, D. M.; Reinhold, V. N. Structural characterization of carbohydrate sequence, linkage, and branching in a quadrupole ion trap mass spectrometer:  Neutral oligosaccharides and N-linked glycans. Analytical Chemistry 1998, 70, 3053-3059.
    (39) Domon, B.; Costello, C. E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate Journal 1988, 5, 397-409.
    (40) Zaia, J. Mass spectrometry of oligosaccharides. Mass Spectrometry Reviews 2004, 23, 161-227.
    (41) Chiang, C. K.; Chen, W. T.; Chang, H. T. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chemical Society Reviews 2011, 40, 1269-1281.
    (42) Garozzo, D.; Spina, E.; Sturiale, L.; Montaudo, G.; Rizzo, R.; Daolio, S. Quantitative determination of β(1–2) cyclic glucans by matrix‐assisted laser desorption mass spectrometry. Rapid Communications in Mass Spectrometry 1994, 8, 358-360.
    (43) Mechref, Y.; Novotny, M. V. Mass spectrometric mapping and sequencing of N-linked oligosaccharides derived from submicrogram amounts of glycoproteins. Analytical Chemistry 1998, 70, 455-463.
    (44) Hung, W. T.; Wang, S. H.; Chen, Y. T.; Yu, H. M.; Chen, C. H.; Yang, W. B. MALDI-TOF MS analysis of native and permethylated or benzimidazole-derivatized polysaccharides. Molecules 2012, 17, 4950-4961.
    (45) Lewandrowski, U.; Resemann, A.; Sickmann, A. Laser-induced dissociation/high-energy collision-induced dissociation fragmentation using MALDI-TOF/TOF-MS instrumentation for the analysis of neutral and acidic oligosaccharides. Analytical Chemistry 2005, 77, 3274-3283.
    (46) Maslen, S.; Sadowski, P.; Adam, A.; Lilley, K.; Stephens, E. Differentiation of isomeric N-glycan structures by normal-phase liquid chromatography-MALDI-TOF/TOF tandem mass spectrometry. Analytical Chemistry 2006, 78, 8491-8498.
    (47) P., N. T. J.; J., H. D. Cationic derivatization of oligosaccharides with girard's T reagent for improved performance in matrix‐assisted laser desorption/ionization and electrospray mass spectrometry. Rapid Communications in Mass Spectrometry 1996, 10, 829-834.
    (48) Hsu, J.; Chang, S. J.; Franz, A. H. MALDI-TOF and ESI-MS analysis of oligosaccharides labeled with a new multifunctional oligosaccharide tag. Journal of the American Society for Mass Spectrometry 2006, 17, 194-204.
    (49) Lan, M.-D.; Yuan, B.-F.; Feng, Y.-Q. Deciphering nucleic acid modifications by chemical derivatization-mass spectrometry analysis. Chinese Chemical Letters 2019, 30, 1-6.
    (50) Obena, R. P.; Tseng, M. C.; Primadona, I.; Hsiao, J.; Li, I. C.; Capangpangan, R. Y.; Lu, H. F.; Li, W. S.; Chao, I.; Lin, C. C.; Chen, Y. J. UV-activated multilayer nanomatrix provides one-step tunable carbohydrate structural characterization in MALDI-MS. Chemical Science 2015, 6, 4790-4800.
    (51) Girault, S.; Chassaing, G.; Blais, J. C.; Brunot, A.; Bolbach, G. Coupling of MALDI-TOF mass analysis to the separation of biotinylated peptides by magnetic streptavidin beads. Analytical Chemistry 1996, 68, 2122-2126.
    (52) Sanjeet K. S.; Jyotirmayee K.; Sarangi M. Thin layer chromatography: A tool of biotechnology for isolation of bioactive compounds from medicinal plants. International Journal of Pharmaceutical Sciences Review and Research, 2013, 18, 126-132..
    (53) Archana A.; Bele A.A.; Khale A. An overview on thin layer chromatography. International Journal of Pharmaceutical Sciences and Research, 2011, 2, 256-267..
    (54) Dickson, H.; Kittredge, K. W.; Sarquis, A. M. Thin-layer chromatography: The "eyes" of the organic chemist. Journal of Chemical Education 2004, 81, 1023.
    (55) Fuchs, B.; Schiller, J.; Suss, R.; Schurenberg, M.; Suckau, D. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry to thin-layer chromatography for the analysis of phospholipids from egg yolk. Analytical and Bioanalytical Chemistry 2007, 389, 827-834.
    (56) Fuchs, B.; Sub, R.; Nimptsch, A.; Schiller, J. MALDI-TOF-MS directly combined with TLC: A review of the current state. Chromatographia 2008, 69, 95-105.
    (57) Cserhati, T.; Forgacs, E. Trends in thin-layer chromatography. Journal of Chromatographic Science 1997, 35, 383-391.
    (58) Tatiana, B.; Paola, P.; Maria, G. M.; Elena, T. Separation and quantitative determination of carbohydrates in microbial submerged cultures using different planar chromatography techniques (HPTLC, AMD, OPLC). Journal of Analytical and Bioanalytical Techniques 2015, 6, 1-9.
    (59) Shewiyo, D. H.; Kaale, E.; Risha, P. G.; Dejaegher, B.; Smeyers-Verbeke, J.; Heyden, Y. V. HPTLC methods to assay active ingredients in pharmaceutical formulations: A review of the method development and validation steps. Journal of Pharmaceutical and Biomedical Analysis 2012, 66, 11-23.
    (60) Skalska-Kaminska, A.; Matysik, G.; Wojciak-Kosior, M.; Donica, H.; Sowa, I.: Thin-Layer Chromatography of Sugars in Plant Material, 2009, 22.18-24.
    (61) Gal, A. E. Separation and identification of monosaccharides from biological materials by thin-layer chromatography. Analytical Biochemistry 1968, 24, 452-461.
    (62) Zhang, Z.; Xie, J.; Zhang, F.; Linhardt, R. J. Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Analytical Biochemistry 2007, 371, 118-120.
    (63) Zhang, Z.; Xiao, Z.; Linhardt, R. J. Thin-layer chromatography for the separation and analysis of acidic carbohydrates. Journal of Liquid Chromatography and Related Technologies 2009, 32, 1711-1732.
    (64) Qureshi, M. N.; Stecher, G.; Huck, C.; Bonn, G. K. Online coupling of thin layer chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: synthesis and application of a new material for the identification of carbohydrates by thin layer chromatography/matrix free material enhanced laser desorption/ionization mass spectrometry. Rapid Communications in Mass Spectrometry : RCM 2010, 24, 2759-2764.
    (65) Tuzimski, T. Application of different modes of thin-layer chromatography and mass spectrometry for the separation and detection of large and small biomolecules. Journal of Chromatography. A 2011, 1218, 8799-8812.
    (66) Cheng, S. C.; Huang, M. Z.; Shiea, J. Thin layer chromatography/mass spectrometry. Journal of Chromatography. A 2011, 1218, 2700-2711.
    (67) Beate Fuchs, K. M. Combining TLC separation with MS detection - A revival of TLC. Journal of Glycomics and Lipidomics 2015, 05.
    (68) Poole, C. F.; Poole, S. K. Instrumental thin-layer chromatography. Analytical Chemistry 1994, 66, 27A-37A.
    (69) Mehl, J. T.; Hercules, D. M. Direct TLC-MALDI coupling using a hybrid plate. Analytical Chemistry 2000, 72, 68-73.
    (70) Gusev, A. I.; Proctor, A.; Rabinovich, Y. I.; Hercules, D. M. Thin-layer chromatography combined with matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry 1995, 67, 1805-1814.
    (71) Nimptsch, K.; Suss, R.; Riemer, T.; Nimptsch, A.; Schnabelrauch, M.; Schiller, J. Differently complex oligosaccharides can be easily identified by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry directly from a standard thin-layer chromatography plate. Journal of Chromatography. A 2010, 1217, 3711-3715.
    (72) Batubara, A.; Carolan, V. A.; Loadman, P. M.; Sutton, C.; Shnyder, S. D.; Clench, M. R. Thin-layer chromatography/matrix-assisted laser desorption/ionisation mass spectrometry and matrix-assisted laser desorption/ionisation mass spectrometry imaging for the analysis of phospholipids in LS174T colorectal adenocarcinoma xenografts treated with the vascular disrupting agent DMXAA. Rapid Communications in Mass Spectrometry 2015, 29, 1288-1296.
    (73) Zhang, Z.; Ratnayaka, S. N.; Wirth, M. J. Protein UTLC-MALDI-MS using thin films of submicrometer silica particles. Journal of Chromatography. A 2011, 1218, 7196-7202.
    (74) Kroslakova, I.; Pedrussio, S.; Wolfram, E. Direct coupling of HPTLC with MALDI-TOF MS for qualitative detection of flavonoids on phytochemical fingerprints. Phytochemical Analysis : PCA 2016, 27, 222-228.
    (75) Chen, C. C.; Yang, Y. L.; Ou, C. L.; Chou, C. H.; Liaw, C. C.; Lin, P. C. Direct monitoring of chemical transformations by combining thin layer chromatography with nanoparticle-assisted laser desorption/ionization mass spectrometry. The Analyst 2013, 138, 1379-1385.
    (76) Lemmnitzer, K.; Griesinger, H.; Sub, R.; Matheis, K.; Schulz, M.; Schiller, J. Analysis of glycosaminoglycan oligosaccharides by combined HPTLC/MALDI-TOF MS: reduced silica gel thickness leads to improved spectral qualities and reduced side reactions. Chromatographia 2015, 78, 1409-1413.
    (77) Ivleva, V. B.; Sapp, L. M.; O'Connor, P. B.; Costello, C. E. Ganglioside analysis by thin-layer chromatography matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry 2005, 16, 1552-1560.
    (78) Triantis, V.; Bode, L.; Joost Van Neerven R. J. Immunological effects of human milk oligosaccharides. Frontiers in Pediatrics 2018, 6, 190.
    (79) Nestle A. The benefits of human milk oligosaccharides on immunity. Annals of Nutrition and Metabolism, 2016, 69, 42-51.
    (80) Totten, S. M.; Wu, L. D.; Parker, E. A.; Davis, J. C.; Hua, S.; Stroble, C.; Ruhaak, L. R.; Smilowitz, J. T.; German, J. B.; Lebrilla, C. B. Rapid-throughput glycomics applied to human milk oligosaccharide profiling for large human studies. Analytical and Bioanalytical Chemistry 2014, 406, 7925-7935.
    (81) Ruhaak, L. R.; Lebrilla, C. B. Analysis and role of oligosaccharides in milk. BMB Reports 2012, 45, 442-451.
    (82) Ayechu-Muruzabal, V.; van Stigt, A. H.; Mank, M.; Willemsen, L. E. M.; Stahl, B.; Garssen, J.; Van't Land, B. Diversity of human milk oligosaccharides and effects on early life immune development. Frontiers in Pediatrics 2018, 6, 239.
    (83) Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 2012, 22, 1147-1162.
    (84) Smilowitz, J. T.; Lebrilla, C. B.; Mills, D. A.; German, J. B.; Freeman, S. L. Breast milk oligosaccharides: structure-function relationships in the neonate. Annual Review of Nutrition 2014, 34, 143-169.
    (85) Wu, S.; Tao, N.; German, J. B.; Grimm, R.; Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. Journal of Proteome Research 2010, 9, 4138-4151.
    (86) Puccio, G.; Alliet, P.; Cajozzo, C.; Janssens, E.; Corsello, G.; Sprenger, N.; Wernimont, S.; Egli, D.; Gosoniu, L.; Steenhout, P. Effects of infant formula with human milk oligosaccharides on growth and morbidity: A randomized multicenter trial. Journal of Pediatric Gastroenterology and Nutrition 2017, 64, 624-631.
    (87) Balogh, R.; Szarka, S.; Beni, S. Determination and quantification of 2'-O-fucosyllactose and 3-O-fucosyllactose in human milk by GC-MS as O-trimethylsilyl-oxime derivatives. Journal of Pharmaceutical and Biomedical Analysis 2015, 115, 450-456.
    (88) Remoroza, C. A.; Mak, T. D.; De Leoz, M. L. A.; Mirokhin, Y. A.; Stein, S. E. Creating a mass spectral reference library for oligosaccharides in human milk. Analytical Chemistry 2018, 90, 8977-8988.
    (89) Sprenger, G. A.; Baumgartner, F.; Albermann, C. Production of human milk oligosaccharides by enzymatic and whole-cell microbial biotransformations. Journal of Biotechnology 2017, 258, 79-91.
    (90) Mantovani, V.; Galeotti, F.; Maccari, F.; Volpi, N. Recent advances on separation and characterization of human milk oligosaccharides. Electrophoresis 2016, 37, 1514-1524.
    (91) Dreisewerd, K.; Kolbl, S.; Peter-Katalinic, J.; Berkenkamp, S.; Pohlentz, G. Analysis of native milk oligosaccharides directly from thin-layer chromatography plates by matrix-assisted laser desorption/ionization orthogonal-time-of-flight mass spectrometry with a glycerol matrix. Journal of the American Society for Mass Spectrometry 2006, 17, 139-150.
    (92) Harvey, D. J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. Mass Spectrometry Reviews 2015, 34, 268-422.
    (93) Jovanovic, M.; Tyldesley-Worster, R.; Pohlentz, G.; Peter-Katalinic, J. MALDI Q-TOF CID MS for diagnostic ion screening of human milk oligosaccharide samples. Int J Mol Sci 2014, 15, 6527-6543.
    (94) Primadona, I.; Lai, Y. H.; Capangpangan, R. Y.; Obena, R. P.; Tseng, M. C.; Huang, M. F.; Chang, H. T.; Li, S. T.; Wu, C. Y.; Chien, W. T.; Lin, C. C.; Wang, Y. S.; Chen, Y. J. Functionalized HgTe nanoparticles promote laser-induced solid phase ionization/dissociation for comprehensive glycan sequencing. The Analyst 2016, 141, 6093-6103.
    (95) McLean, J. A.; Stumpo, K. A.; Russell, D. H. Size-selected (2−10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. Journal of the American Chemical Society 2005, 127, 5304-5305.
    (96) Tzeng, Y.-K.; Chang, C.-C.; Huang, C.-N.; Wu, C.-C.; Han, C.-C.; Chang, H.-C. Facile MALDI-MS analysis of neutral glycans in NaOH-doped matrixes: Microwave-assisted deglycosylation and one-step purification with diamond nanoparticles. Analytical Chemistry 2008, 80, 6809-6814.
    (97) Su, C.-L.; Tseng, W.-L. Gold nanoparticles as assisted matrix for determining neutral small carbohydrates through laser desorption/ionization time-of-flight mass spectrometry. Analytical Chemistry 2007, 79, 1626-1633.
    (98) Obena, R. P.; Lin, P. C.; Lu, Y. W.; Li, I. C.; del Mundo, F.; Arco, S.; Nuesca, G. M.; Lin, C. C.; Chen, Y. J. Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry 2011, 83, 9337-9343.
    (99) Tseng, M. C.; Obena, R.; Lu, Y. W.; Lin, P. C.; Lin, P. Y.; Yen, Y. S.; Lin, J. T.; Huang, L. D.; Lu, K. L.; Lai, L. L.; Lin, C. C.; Chen, Y. J. Dihydrobenzoic acid modified nanoparticle as a MALDI-TOF MS matrix for soft ionization and structure determination of small molecules with diverse structures. Journal of the American Society for Mass Spectrometry 2010, 21, 1930-1939.
    (100) Lin, P.-C.; Tseng, M.-C.; Su, A.-K.; Chen, Y.-J.; Lin, C.-C. Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification. Analytical Chemistry 2007, 79, 3401-3408.
    (101) Tolesa, L. D.; Gupta, B. S.; Lee, M.-J. The chemistry of ammonium-based ionic liquids in depolymerization process of lignin. Journal of Molecular Liquids 2017, 248, 227-234.
    (102) Joseph, Z. Mass spectrometry of oligosaccharides. Mass Spectrometry Reviews 2004, 23, 161-227.
    (103) Harvey, D. J. Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 2011, 879, 1196-1225.
    (104) Kusano, M.; Kawabata, S.-I.; Tamura, Y.; Mizoguchi, D.; Murouchi, M.; Kawasaki, H.; Arakawa, R.; Tanaka, K. Laser desorption/ionization mass spectrometry (LDI-MS) of lipids with iron oxide nanoparticle-coated targets. Mass Spectrometry (Tokyo, Japan) 2014, 3, A0026-A0026.
    (105) Esparza, C.; Borisov, R. S.; Varlamov, A. V.; Zaikin, V. G. Composite glycerol/graphite/aromatic acid matrices for thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry of heterocyclic compounds. Journal of Chromatography. A 2016, 1470, 118-122.
    (106) Crecelius, A.; Clench, M. R.; Richards, D. S.; Parr, V. Thin-layer chromatography–matrix-assisted laser desorption ionisation–time-of-flight mass spectrometry using particle suspension matrices. Journal of Chromatography A 2002, 958, 249-260.
    (107) Liu, H.; Fang, X.; Meng, L.; Wang, S. Spin coating on spherical surface with large central angles. Coatings 2017, 7, 124.
    (108) Tyona, M. D. A theoritical study on spin coating technique. Advances in Materials Research 2013, 2, 195-208.
    (109) Mitzi, D. B.; Kosbar, L. L.; Murray, C. E.; Copel, M.; Afzali, A. High-mobility ultrathin semiconducting films prepared by spin coating. Nature 2004, 428, 299-303.
    (110) Hanaor, D. A. H.; Triani, G.; Sorrell, C. C. Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin films. Surface and Coatings Technology 2011, 205, 3658-3664.
    (111) He, Z.; Alexandridis, P. Nanoparticles in ionic liquids: interactions and organization. Physical Chemistry Chemical Physics : PCCP 2015, 17, 18238-18261.
    (112) Watanabe, M.; Thomas, M. L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K. Application of ionic liquids to energy storage and conversion materials and devices. Chemical Reviews 2017, 117, 7190-7239.
    (113) Pandey, S. Analytical applications of room-temperature ionic liquids: A review of recent efforts. Analytica Chimica Acta 2006, 556, 38-45.
    (114) Hayes, R.; Warr, G. G.; Atkin, R. Structure and nanostructure in ionic liquids. Chemical Reviews 2015, 115, 6357-6426.
    (115) Patel, D. D.; Lee, J. M. Applications of ionic liquids. Chemical Record 2012, 12, 329-355.
    (116) Toledo Hijo, A. A. C.; Maximo, G. J.; Costa, M. C.; Batista, E. A. C.; Meirelles, A. J. A. Applications of ionic liquids in the food and bioproducts industries. ACS Sustainable Chemistry and Engineering 2016, 4, 5347-5369.
    (117) Ratti, R. Ionic liquids: Synthesis and applications in catalysis. Advances in Chemistry 2014, 2014, 1-16.
    (118) Armstrong, D. W.; Zhang, L.-K.; He, L.; Gross, M. L. Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry 2001, 73, 3679-3686.
    (119) Abdelhamid, H. N. Ionic liquid-assisted laser desorption/ionization-mass spectrometry: matrices, microextraction, and separation. Methods and Protocols 2018, 1, 23.
    (120) Fukuyama, Y.; Funakoshi, N.; Takeyama, K.; Hioki, Y.; Nishikaze, T.; Kaneshiro, K.; Kawabata, S.; Iwamoto, S.; Tanaka, K. 3-Aminoquinoline/p-coumaric acid as a MALDI matrix for glycopeptides, carbohydrates, and phosphopeptides. Analytical Chemistry 2014, 86, 1937-1942.
    (121) Fukuyama, Y.; Nakaya, S.; Yamazaki, Y.; Tanaka, K. Ionic liquid matrixes optimized for MALDI-MS of sulfated/sialylated/neutral oligosaccharides and glycopeptides. Analytical Chemistry 2008, 80, 2171-2179.
    (122) Snovida, S. I.; Chen, V. C.; Perreault, H. Use of a 2,5-dihydroxybenzoic acid/aniline MALDI matrix for improved detection and on-target derivatization of glycans: A preliminary report. Analytical Chemistry 2006, 78, 8561-8568.
    (123) Dupont, J.; Scholten, J. D. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chemical Society Reviews 2010, 39, 1780-1804.
    (124) Wittmar, A.; Ruiz-Abad, D.; Ulbricht, M. Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology. Journal of Nanoparticle Research 2012, 14, 651.
    (125) Zhang, H.; Cui, H.; Yao, S.; Zhang, K.; Tao, H.; Meng, H. Ionic liquid-stabilized non-spherical gold nanofluids synthesized using a one-step method. Nanoscale Research Letters 2012, 7, 583.
    (126) Ueno, K.; Watanabe, M. From colloidal stability in ionic liquids to advanced soft materials using unique media. Langmuir : The ACS Journal of Surfaces and Colloids 2011, 27, 9105-9115.
    (127) Fu, Q.; Liang, T.; Li, Z.; Xu, X.; Ke, Y.; Jin, Y.; Liang, X. Separation of carbohydrates using hydrophilic interaction liquid chromatography. Carbohydrate Research 2013, 379, 13-17.
    (128) Robyt, J. F. Carbohydrates/thin-layer (planar) chromatography I.D. Wilson, M. Cooke, C.F. Poole (Eds.), Encyclopedia of separation science, Academic Press, London 2000, 5, 2235-2244.
    (129) Vreeker, G. C.; Wuhrer, M. Reversed-phase separation methods for glycan analysis. Analytical and Bioanalytical Chemistry 2017, 409, 359-378.
    (130) Bruker, TLC-MALDI workflow manual. Legal and regulatory notices, November 2011, Revision 2
    (131) Ashline, D. J.; Lapadula, A. J.; Liu, Y. H.; Lin, M.; Grace, M.; Pramanik, B.; Reinhold, V. N. Carbohydrate structural isomers analyzed by sequential mass spectrometry. Analytical Chemistry 2007, 79, 3830-3842.
    (132) Huang, Y.; Dodds, E. D. Discrimination of isomeric carbohydrates as the electron transfer products of group II cation adducts by ion mobility spectrometry and tandem mass spectrometry. Analytical Chemistry 2015, 87, 5664-5668.
    (133) Smolira, A.; Wessely-Szponder, J. Importance of the matrix and the matrix/sample ratio in MALDI-TOF-MS analysis of cathelicidins obtained from porcine neutrophils. Applied Biochemistry and Biotechnology 2015, 175, 2050-2065.
    (134) Thurl, S.; Munzert, M.; Boehm, G.; Matthews, C.; Stahl, B. Systematic review of the concentrations of oligosaccharides in human milk. Nutrition Reviews 2017, 75, 920-933.
    (135) Yan, J.; Ding, J.; Jin, G.; Yu, D.; Yu, L.; Long, Z.; Guo, Z.; Chai, W.; Liang, X. Profiling of sialylated oligosaccharides in mammalian milk msing online solid phase Extraction-hydrophilic interaction chromatography coupled with negative-ion electrospray mass spectrometry. Analytical Chemistry 2018, 90, 3174-3182.
    (136) Hennet, T.; Weiss, A.; Borsig, L. Decoding breast milk oligosaccharides. Swiss Medical Weekly 2014, 144, w13927.
    (137) Coppa, G.; Pierani, P.; Zampini, L.; Carloni, I.; Carlucci, A.; Gabrielli, O. Oligosaccharides in human milk during different phases of lactation. Acta Paediatrica 1999, 88, 89-94.

    QR CODE