簡易檢索 / 詳目顯示

研究生: 洪章响
Zhang-Xiang Hung
論文名稱: 具有口袋 n-/p-源極之蕭特基位障電晶體之結構設計
Design of Schottky barrier MOSFET with n-/p- pocket source
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 張勝良
Sheng-Lyang Jang
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 124
中文關鍵詞: 蕭特基位障電晶體
外文關鍵詞: Schottky barrier, MOSFET
相關次數: 點閱:215下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來隨著製程技術的進步使得元件之通道長度可以持續微縮來提高晶片運算速度。但是當通道長度進入深次微米甚至奈米等級後,短通道效應越來越嚴重。例如:Vt roll off、DIBL、 ,Punch through。這些現象使得元件漏電流越來越大。為了解決這些現象,元件設計上會使用更薄的氧化層、較高的基板濃度、較淺的source drain接面深度以及SOI基板、甚至使用多閘極結構來降低漏電流。
在45奈米節點以下,許多元件結構都被提出且廣泛地研究。例如:穿隧電晶體(TFET)、蕭特基位障電晶體(SBT)、鰭式場效電晶體(FinFET)。而蕭特基位障電晶體(SBT)除了能改善傳統金氧半電晶體的缺點外並且較低的源極跟汲極串聯電阻因此被認為是低功耗系統應用的潛力元件,但是其較低的導通電流為此元件的最大缺點。
此論文的目的就是透過元件結構的改變以及相關參數模擬分析來實踐獲得高性能的蕭特基位障電晶體。我們利用汲極工程、源極工程與通道工程分別改善了汲極端的GIDL,以及源極穿隧效率太低等問題。結果地,我們提出一具有口袋n-/p-源極之蕭特基位障電晶體,該模擬結果與傳統MOSFET相比,其可獲致明顯較低的漏電流且不會劣化其導通特性。


In recent years, the development of semiconductor process technology lets device continue to scale down and improve the performance of chips. When the devices are scaled into deep sub-micronmeter and nanometer, the short channel effects, such as Vt roll-off, DIBL, GIDL and punch through, will be degraded. These effects will increase the leakage current.
Below sub-45nm technology node, many device structures have been studied extensively, such as tunneling field effect transistor (TFET), Schottky barrier height transistor(SBT) and Fin field effect transistor (Fin FET). Schottky barrier transistor (SBT) can alleviate the disadvantages of the conventional MOSFET, in addition to have low source/drain series resistance and low-power applications. However, the main problem for the SBT is low on-state current. In this study, to obtain high-performance SBT, the new device structure and the analysis of device parameters are carried out via process and device simulation. We use drain engineering, channel engineering and source engineering to improve GIDL near drain and enhance tunneling probability near source. Comparing the conventional MOSFET to the SBT with n-/p- pocket source, it is found that the new structure SBT can cause much smaller off-state current but comparable on-state current.

Abstract (Chinese)………………………………………………………...I Abstract………………………………………………………………….III Acknowledgement (Chinese)……………………………………..……...V Contents………………………………………………………..………..VI Table Lists……………………………………………………………..VIII Figure Captions…………………………………………………………IX Chapter 1 Introduction……………………………………………………1 1-1 Conventional MOSFET structure…….……………………..2 1-1-1 Short-channel effects …………………………………..2 1-1-2 Drain-induced barrier lowering (DIBL) ……………….3 1-1-3 Hot-carrier effect ………………….…………………...4 1-1-4 Gate-induced Drain leakage (GIDL) …………………..5 1-2 SBT background ……………………………………………5 1-2-1 Conventional SBT device operating principle ………...6 1-3 Motivation …………………………………………………10 1-4 Thesis organization ………………………………………..11 Chapter 2 Device Scheme ……....……………………………………… 12 2-1 The fabrication of conventional SBT structure ………..…. 13 2-2 The fabrication of SBT with n-pocket drain structure ..….. 19 2-3 The fabrication of SBT with n doped drain structure …….. 27 2-4 The fabrication of SBT with n doped drain and buried channel structure …………..………………………………………. 35 2-5 The fabrication of SBT with n doped drain and n-/p- pocket source structure …………...……………………………… 44 2-6 The fabrication of SBT with n doped drain, n-/p- pocket source and buried channel structure…………………….......…….. 53 Chapter 3 Results and discussion ……………………………………… 64 3-1 Conventional SBT structure and conventional NMOS …… 64 3-2 SBT with n-pocket drain structure …………………..……. 71 3-3 SBT with n doped drain structure …………………..……. 76 3-4 SBT with n doped drain and buried channel structure ..….. 80 3-5 SBT with n doped drain and n-/p- pocket source structure . 88 3-5-1 SBT with n doped drain and n- pocket source structure …………………………………………….………… 88 3-5-2 SBT with n doped drain and n-/p- pocket source structure ………………………………………………………. 95 3-6 SBT with n doped drain, n-/p- pocket source and buried channel structure ……………..…………………..……. 104 Chapter 4 Conclusions ……………………………………..………. 120 References ……………………………………………………………. 121

[1] M. Fathipour and Z. Ahangari, “Impact of Channel Thickness on the Electrical Characteristics of Nanoscale Double Gate SOI MOSFET with Metal Source-Drain”, COMMAD , pp. 144 – 147 , July 2008.
[2] J. Larson and J. Snyder. (2004, Sept.) “Schottky Barrier CMOS”, Spinnaker semiconductor, Inc. [Online]. pp. 1–12. Available: http:// www.spinnakersemi.com/Documents/SBMOS_Customer_Technical_Whitepaper_Edition3.pdf.
[3] B. Winstead and U. Ravaioli, “Simulation of schottky barrier MOSFET’s with a coupled quantum injection/monte carlo technique”, IEEE. Trans. Electron Devices, vol. 47, no. 6, June 2000.
[4] S. Zhu, H. Y. Yu, S. J. Whang, J. H. Chen, C Shen, C. Zhu, S. J. Lee, M. F. Li, D. S. H. Chan, W. J. Yoo, A. Du, C. H. Tung, J. Singh, A. Chin, and D. L. Kwong, “ Schottky-barrier S/D MOSFETs with high-K gate dielectrics and metal-gate electrode”, IEEE. Trans. Electron Devices, vol. 25, no. 5, May 2004.
[5] John M. Larson and John P. Snyder, “ Overview and Status of Metal S/D Schottky-Barrier MOSFET Technology , IEEE. Trans. Electron Devices, vol. 53 , no. 5, pp. 1048 – 1058, May 2006.
[6] Y. Nishi, “Insulated gate field effect transistor and its manufacturing method,” Patent 587 527, 1970.
[7] C. J. Koeneke and W. T. Lynch, “Lightly doped Schottky MOSFET”, IEDM IEEE international, pp. 466–469, 1982.
[8] T. Mochizuki and K. D. Wise, “An n-channel MOSFET with Schottky source and drain”, IEEE. Trans. Electron Devices, vol.5, no. 4, pp. 108–111, Apr 1984.
[9] S. E. Swirhun, E. Sangiorgi, A. J. Weeks, R. M. Swanson, K. C. Saraswat, and R. W. Dutton, “A VLSI-suitable Schottky-barrier CMOS process”, IEEE. Trans. Electron Devices, vol. 32, no. 2, pp. 194–202, Feb 1985.
[10] C. S. Oh, Y. H. Koh, and C. K. Kim, “A new P-Channel MOSFET structure with Schottky-Clamped source and drain”, IEDM IEEE international, vol. 30, pp. 609–612,1984.
[11] B.-Y. Tsui and M.-C. Chen, “A novel process for high-performance Schottky barrier PMOS”, J. Electrochem. Soc, vol. 136, no. 5, pp. 1456– 1459, May 1989.
[12] M. Kimura and T. Matsudate, “A new type of Schottky tunnel transistor”, IEEE. Trans. Electron Devices, vol. 15, no. 10, pp. 412–414, Oct 1994.
[13] Simon M. Sze and Kwok K. Ng, PHYSICS OF SEMICONDUCTOR DEVICES, 3rd ed. p.328-338, 2007.
[14] Y. Taur and T.h.Ning, Fundamentals of Modern VLSI Device. New York: Cambridge University Press, 1998, ch.2.
[15] Y. Chen, T. Y. Chan, I. C. Chen, P. K. Ko, and C. Hu, “Subbreakdown leakage current in MOSFET”, IEEE. Trans. Electron Devices, vol. 8, no. 11, pp. 515–517, Nov 1987.
[16] S. Banerjee, J. Coleman, W. Richardson, and A. Shah, “A band-to-band tunneling effect in trench transistor cell”, VLSI Symp. Tech. Dig, pp. 97–98, 1987.
[17] K. Akarvardar, A. Marcha, E. Simoen, V. Subramanian, C. Claeys, P. Gentil, and S. Cristoloveanu, “High-temperature performance of state of-the-art triple-gate transistor”, Microel Rel, vol. 47, no. 12, pp. 2065–2069, Dec. 2007.
[18] X. Tang, J. Katcki, E. Dubois, N. Reckinger, J. Ratajczak, G. Larrieu, P. Loumaye, O. Nisole, and V. Bayot, “Very low Schottky barrier to ntype
silicon with PtEr-stack silicide”, Solid-State Electron, vol. 47, pp. 2105-2111 (2003).
[19] C. Wang, J. P. Snyder. and J. R. Tucker, “Sub-40 nm PtSi Schottky source/drain metal-oxide-semiconductor field-effect transistors”, Appl. Phys. Lett, vol. 74, no. 8, pp. 1174-1176, 1999.
[20] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology”, IEEE. Trans. Electron Devices, vol. 53, pp.1048-1058, 2006.
[21] L. J. Chen, Silicide Technology for Integrated Circuits, London: The Institution of Electrical Engineers, 2004, Chap. 5.
[22] A. Lauwers, J. A. Kittl, M. J. H. Van Dal, O. Chamirian, M. A. Pawlak, M. de Potter, R. Lindsay, T. Raymakers, X. Pages, B. Mebarki, T. Mandrekar, and K. Maex “Ni based silicides for 45nm CMOS and beyond”, Mater. Sci. Eng., B, vol. 114-115, pp. 29-41, 2004.
[23] Y.-L. Jiang, A. Agarwel, G.-P. Ru, G. Cai, and B.-Z. Li, “Nickel silicide formation on shallow junctions”, Nucl. Instrum. Methods Phys. Res., Sect. B, vol. 237, no. 1-2, pp.160-166, 2005.
[24] J. Luo, Z.-J. Qiu, Z. Zhang, M. Östling, and S.-L. Zhang, “Interaction of NiSi with dopants for metalic source/drain applications”, J. Vac. Sci. Technol. B, vol. 28, 2010.
[25] E. H. Rhoderick and R. H. Williams, Metal-semiconductor contacts, 2nd ed. U.K.: Oxford University Press, 1988.

QR CODE