簡易檢索 / 詳目顯示

研究生: 黃崇洧
Chong-Wei Huang
論文名稱: 使用新型金氧半結構之注入鎖定除頻器與雙頻帶注入鎖定倍頻器之研製
Design of Injection-Locked Frequency Divider Using A Novel MOSFET Structure and Dual Band Injection-Locked Frequency Doubler
指導教授: 張勝良
Sheng-Lyang Jang
徐敬文
Ching-Wen Hsue
口試委員: 黃進芳
Jhin-Fang Huang
馮武雄
Wu-Shiung Feng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 90
中文關鍵詞: 頻率合成器鎖相迴路壓控振盪器除頻器
外文關鍵詞: Frequency Synthesizer, PLL, VCO, Divider
相關次數: 點閱:209下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要研製鎖相迴路之注入鎖定除頻器,以及注入鎖定倍頻器。在射頻電路中,特別是振盪器之設計,電晶體是重要的元件,因此針對電晶體的使用上,我們將一種新型元件應用於振盪器中。
在射頻積體電路系統中,整合性的需求越來越高的情況下,每個射頻電路方塊將會被整合進去晶片中。因此系統之雜訊的抑制能力必須相對的提高,否則電路間雜訊互相影響的情況越嚴重,則會造成各元件間的特性與效能越降低。嚴重時甚至會使其他元件的功能失去正常的工作狀態而造成電路誤動作。
壓控振盪器與除頻器是頻率合成器電路中主要的電路之一。對壓控振盪器而言,低相位雜訊可避免相鄰雜訊訊號經由混波轉換的干擾。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作,寬的操作頻寬及低功率消耗。
首先,本論文呈現一個雙頻帶直接注入鎖定倍頻器,在電源電壓為0.7 V且注入電壓1 V時,在補償頻率1MHz點的相位雜訊分別為 -122.49 dBc/Hz及-112.78 dBc/Hz。此晶片本身的消耗功率為5.39 mW。High band Operation range為2.2 GHz,從3.9 GHz 至 6.1 GHz ,其百分比為44%;Low band Operation range為0.3 GHz,從1.7 GHz 至 2 GHz ,其百分比為16.2%,晶片面積為0.773 × 0.901 mm2。
其次,我們呈現一個多模數CMOS LC直接注入鎖定除頻器。在除三mode時,電源電壓為1.2 V,在補償頻率1MHz點的相位雜訊為-114.89 dBc/Hz,Locking range為0.8 GHz,從20.9 GHz 至 21.7 GHz,此時晶片本身的消耗功率為14.9 mW,可調電壓由0 V至1.2 V,其可調範圍為1.16 GHz,從6.21 GHz至7.37 GHz約為17.08 %的可調範圍;在除二mode時,電源電壓為0.9 V,在補償頻率1MHz點的相位雜訊為-130.98 dBc/Hz,Locking range為0.8 GHz,從15.2 GHz 至 16.0 GHz,此時晶片本身的消耗功率為3.97 mW;晶片面積為0.82 × 0.748 mm2。
最後,我們提出一個使用0.35μm製程的新型除三注入鎖定除頻器,此除頻器使用互補式交錯耦合CMOS LC共振腔實現,其外部訊號是透過兩個新型鬆餅狀MOSFET的Gate端注入。此除頻器是使用諧波項來達成除頻的效果。當外部注入信號為0dBm時,除三時其鎖定範圍為7 GHz 到 7.5 GHz;晶片面積為0.522 × 0.594 mm2。


This thesis presents the design of Injection - Locked Frequency Dividers (ILFDs) and Injection - Locked Frequency Doubler. In the radio-frequency integrated circuit (RFIC), transistors are constantly used for the RF circuit designs, especially for oscillators. Hence concerning the use of the transistors, we will apply the novel transistor into the oscillator.
As the integration requirements get more and more in the RFIC system, every RF block will be integrated into the chip. Therefore the ability of restraining noise must be enhanced relatively, or the mutual influences between the circuit blocks are stronger to make every element’s performance low. Even it will make the element’s function not to work ordinarily and then let the circuit get wrong function.
The key building blocks in the frequency synthesizer are the voltage controlled oscillator (VCO) and the high frequency divider circuit. Most importantly, low phase-noise is required to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range and lower power consumption.
Firstly, this thesis describes a dual resonance injection locked frequency doubler. At the supply voltage of 0.7 V and the injection voltage at 1 V, the output phase noise of the divider is -122.49 dBc/Hz and -112.78 dBc/Hz at 1 MHz offset frequency. The power consumption of divider core is 5.39 mW. High band Operation range is about 2.2 GHz, from 3.9 GHz to 6.1 GHz, which the percentage is about 44 %. Low band Operation range is about 0.3 GHz, from 1.7 GHz to 2 GHz, which the percentage is about 16.2 %. The die area is 0.773 × 0.901 mm2.
Secondly, we propose a CMOS LC-tank divider-by-3 injection locked frequency dividers with double mode. The supply voltage of divider by 3 is about 1.2 V, the output phase noise of the divider is -114.89 dBc/Hz at 1MHz offset frequency. The locking range is about 0.8 GHz, from 20.9 GHz to 21.7 GHz. The power consumption of divider core is 14.89 mW. Tuning range is about 1.16 GHz, from 6.21 GHz to 7.37 GHz, which the tunable range is about 17.08 %, while the control voltage was tuned from 0 V to 1.2 V. The supply voltage of divider by 2 is about 0.9 V, the output phase noise of the divider is -130.98 dBc/Hz at 1MHz offset frequency. The locking range is about 0.8 GHz, from 15.2 GHz to 16.0 GHz. The power consumption of divider core is 3.97 mW. The die area is 0.82 × 0.748 mm2.
Finally, the ILFD circuit is realized with a complementary cross-coupled CMOS LC-tank oscillator with a lossy resonator, and the external differential injection is carried out through the gates of two waffle MOSFETs. The self-oscillating ILFD is injection-locked by the third/first harmonic input to obtain the division order of three/one. An external injected signal power of 0 dBm provides a locking range from 7 GHz to 7.5 GHz in the divide-by-3 mode. The die area is 0.522 × 0.594 mm2.

摘 要 I Abstract III 誌 謝 V Table of Contents VI List of Figures VIII List of Tables X Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 Principles and Design Considerations of Voltage-Controlled Oscillators and Injection-Locked Frequency Dividers 6 2.1 Introduction 6 2.2 The Oscillator Theory 7 2.3 Sorts of Oscillators 12 2.3.1 Resonatorless Oscillators 13 2.3.2 LC-Tank Oscillators 17 2.4 Design Concepts of Voltage-Controlled Oscillators 20 2.4.1 VCO Characteristic Parameters 21 2.4.2 Phase Noise in Oscillator 23 2.4.2.1 Definition of Phase Noise 23 2.4.2.2 Phase Noise Model 25 2.4.2.3 Phase Noise in Wireless Communication 29 2.4.3 Quality Factor 31 2.5 Injection Locking Frequency Divider 34 2.5.1 Principle of Injection Locked Frequency Divider 35 2.5.2 Locking Range 36 2.5.3 Switch ILFD 39 2.6 Principle of Doubler 41 2.7 Dual-Band Phenomenon 45 2.7.1 Dual-band resonator 45 2.7.2 Two Series-LC Resonators 48 Chapter 3 A Dual-Resonance Injection-Locked Frequency Doubler in 0.18μm CMOS Technology 49 3.1 Introduction 49 3.2 Circuit Design 50 3.3 Measurement Results 52 3.4 Conclusion 60 Chapter 4 A Parallel-Injection Injection Locked Frequency Divider in 0.35 μm SiGe HBT Process 61 4.1 Introduction 61 4.2 Circuit Design 62 4.3 Measurement Results 66 4.4 Conclusion 72 Chapter 5 A 0.35-μm CMOS ÷3 Injection-Locked Frequency Divider Implemented with the Waffle Injection MOSFET 73 5.1 Introduction 73 5.2 Circuit Design 74 5.3 Measurement Results 77 5.4 Conclusion 83 Chapter 6 Conclusion 84 References 86

[1] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
[2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[3] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[4] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[5] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
[6] Ali Hajimiri, and Thomas H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 2, February 1998.
[7] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[8] John G. Maneatis and Mark A. Horowitz, “Precise Delay Generation Using Coupled Oscillators, ” IEEE Journal of Solid-State Circuits, Vol. 28, NO. 12, DECEMBER 1993.
[9] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[10] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[11] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[12] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[13] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
[14] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[15] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
[16] P. Andreani, and S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 905-910, June 2000.
[17] J. Craninckx, and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 890-897, Jul. 1996.
[18] Q. Huang, and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, no. 5, pp. 456-463, Mar. 1996.
[19] J. Lee, and B. Razavi,“A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr. 2004.
[20] H. R. Rategh, and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, Jun. 1999.
[21] H. D. Wohlmuth, and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sep. 2002.
[22] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 117μm standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[23] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[24] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection-locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, Jun. 2001.
[25] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 845-851, Jul. 2002.
[26] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[27] H. Wu, “Signal generation and processing in high-frequency/high-speed siliconbased integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[28] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[29] J. M. C. Wong and H. C. Luong, “A 1.5-V 4-GHz dynamic-loading regenerative frequency doubler in a 0.35-μm CMOS process,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 50, no. 8, pp. 450–455, Aug. 2003.
[30] K. Yamamoto. “ A 1.8V Operation 5-GHz-Bnad CMOS Frequency Doubler Using Current-Reuse Circuit Design Technique. ” IEEE J. Solid- State Circuits, 40(6):1288.1295, June 2005.
[31] X. Zhang, and Y-H Yun, “A DC to X-band frequency doubler using GaAs HBT MMIC,” 1997 IEEE MTT-S Int. Microwave Symp. Digest, vol. 3, pp. 1213-1216, June 1997.
[32] R. G. Freitag, S. H. Lee, D. M. Krafcsil, D. E. Dawson, and J. E. Degenford, “Stability and improved circuit modeling considerations for high power MMIC amplifiers, ” 1988 IEEE MTT-S International Microwave Symposium Digest, New York, NY, pp. 125-128, May 1988.
[33] R. G. Freitag, “A unified analysis of MMIC power amplifier stability, ” 1992 IEEE MTT-S International Microwave Symposium Digest, Albuquerque, New Mexico, pp. 297-300, June 1992.
[34] 唐毓隆, “ 三推式振盪器,” 碩士論文, 國立台灣大學, 民國88 年.
[35] Pin-Pin Huang, Tian-Wei Huang, Huei Wang, E.W. Lin, Yonghui Shu, G.S. Dow, R. Lai, M. Biedenbender and J.H. Elliott, “A 94-GHz 0.35-W power amplifier module, ” IEEE Trans. On Microwave Theory and Tech., vol. 45, no. 12, part 2, pp. 2418-2423, Dec. 1997.
[36] D. L. Ingram, D. I. Stones, J. H. Elliott, Huei Wang, R. Lai and M. Biedenbender, “A 6-W Ka-band power module using MMIC power amplifiers, ” IEEE Trans. On Microwave Theory and Tech., vol. 45, no. 12, part 2, pp. 2424-2430, Dec. 1997.
[37] M. Yang, S. Oh, and S. Lee, “Low power fully differential frequency doubler, ” IEE Electronics Letters, Vol. 39, No. 19, pp. 1388 – 1389, Sept. 2003.
[38] C. Leifso and J. Nisbet, “A monolithic 6 GHz quadrature frequency doubler with adjustable phase offset” IEEE J. Solid State Circuits, vol. 41, no. 2, pp.405 – 412, 2006.
[39] L. Zhang, D. Karasiewicz, B. Cifctioglu, and H. Wu, “A 1.6-to-3.2/4.8 GHz dual-modulus injection-locked frequency multiplier in 0.18 μm digital CMOS, ” IEEE Radio-Frequency Integrated Circuits (RFIC) Symposium, pp.427-430, June 2008.
[40] E. Monaco, M. Borgarino, F. Svelto, and A. Mazzanti, “A 5.2 mW Ku-band CMOS injection-locked frequency doubler with differential input/output,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), Sep. 2009, pp. 61–64.
[41] A.Mazzanti, E. Monaco, M. Pozzoni, and F. Svelto, “A 13.1% tuning range 115 GHz frequency generator based on injection-locked frequency doubler in 65 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010.
[42] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, “A Dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[43] S.-L. Jang, C.-C. Shih, C.-W. Chang, C.-C. Liu, and J.-F. Huang, “A dual-band divide-by-2 injection locked frequency divider in 0.35 μm SiGe BiCMOS,” Microwave and Optical Technology Lett., pp.2762-2765, Dec., 2010.
[44] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, “CMOS injection-locked frequency divider with two series-LC resonators,” Microwave and Optical Technology Lett., pp.290-293, Feb., 2011.
[45] S.-L. Jang, C. C. Liu and C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., pp. 236-238, April, 2009.
[46] H. Wu and A. Hajimiri, “A 19 GHz, 0.5mW, 0.35 μmCMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2001, pp. 412–413, 471.
[47] J. K. Nakaska, and J. W. Haslett, “An integrated 6.2-11GHz SiGe inductorless injection locked frequency divider”, European Microwave Conf., vol. 1, Oct. 2005.
[48] S.-L. Jang, C.-C. Shih, C.-W. Chang, C.-C. Liu, and J.-F. Huang, “A dual-band divide-by-2 injection locked frequency divider in 0.35 μm SiGe BiCMOS,” Microwave and Optical Tech. Lett., pp.2762-2765, Dec., 2010.
[49] J. C. Chien, C. S. Lin, L. H. Lu, H. Wang, J. Yeh, C. Y. Lee, and J. Chern, “A harmonic injection-locked frequency divider in 0.18 μm SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 10, no. 10, pp. 561-563, Oct. 2006.
[50] S.-L. Jang, R.-K. Yang, C.-C. Liu, and C.-W. Hsue, “A low power SiGe BiCMOS series-tuned divide-by-3 injection locked oscillators ,” Microwave and Optical Tech. Lett., vol. 51, No.9, pp. 2239-2242, 2009.
[51] S.-L. Jang, C.-W. Hsu, C.-W. Chang and C.-W. Hsue, “ Wide-band 3 injection locked frequency divider in 0.35 μm SiGe BiCMOS,” Microwave and Optical Technology Lett., pp.609-611, March, 2011.
[52] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeter- wave frequency synthesizer for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
[53] C.-C. Liu, C.-C. W., S.-L. Jang, and M.-H. Juang, “A SiGe injection-locked-oscillator using HBT injector operated in saturation region,” Microwave and Optical Technology Lett., pp.734-737, April, 2011.
[54] B. Razavi, “A study of injection locking and pulling in oscillators, ” IEEE J. Solid-State Circuits, 39(9):1415-1424, Sept. 2004.
[55] T. Ohira, “Extended Adler's injection locked Q factor formula for general one- and two-port active device oscillators,” IEICE Electronics Express, Vol. 7, No.19, 1486–1492. 2010.
[56] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-Fang Huang, “divide-by-3 LC injection locked frequency divider implemented with 3D Inductors,” IEICE Trans. Electronics., Vol.E91-C,No.6,pp.956-962, Jun. 2008.
[57] H. Wu and L. Zhang, “A 16-to-18GHz 0.18 μm epi-CMOS divide-by-3 injection-locked frequency divider,” in 2006 ISSCC, pp.602-603.
[58] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Digest of Tech. Papers. pp. 412-413, Feb. 2001.
[59] S.-L. Jang, C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35 μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470-472, July, 2008.
[60] S,-L. Jang, H.-S. Chen, C.-C. Liu, and M.-H. Juang, “A 0.35 μm CMOS divide-by-3 LC injection locked frequency divider using linear mixers,” Microwave Opt. Technol. Lett., pp.2740-2743, Dec., 2010.
[61] S.-L. Jang, P.-X. Lu, C.-F. Lee and M.-H. Juang , “Divide-by-3 LC injection locked frequency divider with a transformer as an injector’s load, ” Microwave Opt. Technol. Lett., pp. 2722-2725, Oct. 2008.
[62] S.-L. Jang, W.-C. Chen, and C.-F. Lee, “Divide-by-3 LC injection locked frequency divider with inductor over MOS topology ,” Microwave Opt. Technol. Lett., Vol. 50, no. 4, pp.988-992, April. 2008.
[63] W. Wu, S. Lam, and M. Chan, “A wide-band T/R switch using enhanced compact waffle MOSFETs,” IEEE Microwave Wireless Components Lett. 16, 287-289. 2006.
[64] S. Lam, P.K.T. Mok, W.H. Ki, P.K. Ko and M. Chan, “An enhanced compact waffle MOSFET with low drain capacitance from a standard submicron CMOS technology,” Solid-State Electronics, Vol. 47, pp. 785-789, May 2003.
[65] C.C. Boon, M.A. Do, K. S. Yeo, J.G. Ma, and R.Y. Zhao, “Parasitic-compensated quadrature LC oscillator,” IEE Proceedings: Circuits、Devices & Systems,vol. 151, no. 1, pp. 45-48, Feb. 2004.

無法下載圖示 全文公開日期 2016/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE