簡易檢索 / 詳目顯示

研究生: 王千禎
CHIEN-CHEN WANG
論文名稱: 承載錫及硫化錫之奈米碳管電極作為鋰離子電容器之負極儲能特性
Energy storage properties of the Sn+SnS@CNT negative electrode for lithium ion capacitor
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 陳崇賢
Chorng-Shyan Chern
許貫中
Kung-Chung Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 鋰離子電容器奈米碳管酸化作用硫化錫鋰化程序電解液添加劑
外文關鍵詞: lithium ion capacitor, carbon nanotube, oxidation, tin monosulfide, lithiation, electrolyte additive
相關次數: 點閱:420下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目標製備鋰離子電容器,尤其是其負極電化學儲存特性,對象為多壁奈米碳管鍍膜錫及硫化錫活性材料(Sn+SnS@CNT),儲存特性量測在1.0 M LiPF6/DEC:EC:DMC= 1:1:1vol%有機電解液進行。
製備採用一維導電的多壁奈米碳管先進行低度表面酸化,再以高溫爐熱處理的方式,將錫及硫化錫鍍於多壁奈米碳管上形成奈米碳管/錫、硫化錫之複合體。表面酸化的目的在於幫助錫及硫化錫能均勻附著在多壁奈米碳管表面上,雖然表面酸化會使多壁奈米碳管導電率下降,但若不進行表面酸化,錫及硫化錫則無法附著在多壁奈米碳管上,而若過度酸化,則會嚴重破壞多壁奈米碳管的導電率,因此適當的表面酸化是必須的。
利用XRD分析得知價廉的低溫熱處理法能使錫及硫化錫鍍在多壁奈米碳管上,但未知其附著情形。利用場發射掃描式電子顯微鏡(FESEM)拍攝多壁奈米碳管、熱處理後的多壁奈米碳管以及預鋰化後的多壁奈米碳管,觀察到熱處理後,錫及硫化錫能均勻分布在奈米碳管周圍,形成似片狀的結構。
將兩種酸化溫度CNT(50˚C / 60˚C)搭配兩種高溫爐熱處理配方(C:S:Sn=1:1.2:5.4及1:1.8:5.29)的奈米碳管/錫、硫化錫負極材料,分別為Sample A-01(或02)、Sample B-01(或02)製備成電極片並進行預鋰化程序,此四個樣品在低電流密度 0.1 A g-1進行充放電前三圈的電量分別為1480 / 1690 / 1330 / 937 mAh g-1、844 / 750 / 845 / 653 mAh g-1以及716 / 554 / 645 / 548 mAh g-1,可以發現酸化溫較低的Sample A電量均高於酸化溫度較高的Sample B,顯示Sample A在儲能方面優於Sample B,防止Sample A在多次充放電後損耗太多硫導致電容量下降,因此加入微量高分子添加劑吡咯(Pyrrole),同樣在低電流密度0.1 A g-1進行充放電,Sample A-01、02第三圈的電量從716 / 554 mAh g-1大幅提升至1400 / 1320 mAh g-1,即使提升電流密度至1 A g-1進行充放電五圈之平均電量仍有314 / 280 mAh g-1,而未加吡咯的Sample A-01則只有256 mAh g-1,但若將電流密度升至10 A g-1進行充放電五圈之平均電量,添加吡咯的Sample A-01、02電量只有88 / 83 mAh g-1,則未添加吡咯的Sample A-01有較高的電量為104 mAh g-1,將添加微量吡咯的Sample A-01、02,經過不同電流密度充放電再回到低電流密度0.1 A g-1,添加微量吡咯的Sample A-01相比於Sample A-02,前者的電量為807 mAh g-1高於後者的717 mAh g-1,顯示添加微量吡咯的Sample A-01有較好的可逆性。


In this study, we prepare a negative electrode of Sn+SnS@CNT composite as anode for lithium ion capacitor in LiPF6/DEC:EC:DMC electrolyte, and measure its electrochemical energy storage capability.
The CNT surface is essentially hydrophobic. Coating of tin and tin monosulfide cannot be done homogeneously over the entire CNT assembly without oxidizing the CNT surface. On the contrary, if the CNT surface is excessively oxidized, the electrical conductivity of CNT shall be degraded. Thus the surface of CNT has been lightly oxidized and coated with molten tin and sulfur. XRD of the composite electrode indicates the peaks of tin and tin monosulfide, in addition to the feature of CNT. SEM images show the mass of tin and tin monosulfide wraps up the one-dimensional nanotubes, and these materials become fragmented yet attached to CNT after lithiation.
The so-prepared CNT, oxidized at 50˚C or 60˚C and loaded with active materials of two C:S:Sn mass ratios (1:1.2:5.4 and 1:1.8:5.29), are denoted as A-01/02 and B-01/02. They exhibit capacity 1480/1690/ 1330/937 mAh g-1 in first charge cycle, 844/750/845/653 mAh g-1 in second cycle, and 716/554/645/548 mAh g-1 in third cycle at 0.1 A g-1. We conclude that the capacities of Sample A are higher than those of Sample B. To protect the electrode from losing too much sulfur, a small amount of pyrrole is added in electrolyte. With pyrrole, the electrode capacity at 0.1 A g-1 increases to 1400/1320 mAh g-1. If we raise the current density to 1.0 A g-1, the capacity of A-01 with pyrrole 314 mAh g-1, is still superior to that without pyrrole 256 mAh g-1. However, further raising the current to 10 A g-1, the capacity of A-01/02 with pyrrole decrease to 88/83 mAh g-1, which is less than A-01 without pyrrole, 104 mAh g-1. After the rate capacity measurements, A-01 with pyrrole has higher reversibility than A-02.

摘要 I ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與理論基礎 3 2.1 電化學電容器(Electrochemical capacitors, EC) 3 2.1.1 電雙層電容器(Electrochemical Double-layer Capacitors, EDLC) 6 2.1.2 擬電容器 (Pseudocapacitor) 7 2.1.3 鋰離子混合式電容器 (Lithium-ion hybrid capacitors, LIHC) 8 2.1.4 鋰離子混合式電容器電解液[7] 12 2.2 鋰離子電池(Lithium ion battery, LIB) 13 第三章 實驗方法與步驟 14 3.1 實驗藥品耗材與儀器設備 14 3.1.1 負極材料製備 14 3.1.2 電性量測 16 3.1.3 化學測試儀器及設備 17 3.1.4 材料鑑定及分析之儀器 18 3.2 實驗流程圖 19 3.2.1 負極材料合成 19 3.2.2 負極漿料製備 20 3.2.3 鋰離子混和式電容器之電極製備 21 3.3 實驗方法 22 3.3.1 鋰離子混合式電容器負極材料合成 22 3.3.2 鋰離子混合式電容器負極漿料製備 23 3.3.3 電流收集器清洗及準備工作 24 3.3.4 鋰離子混合式電容器電解液製備 24 3.4 電極材料鑑定與分析 25 3.4.1 場發射掃瞄式電子顯微鏡 25 3.4.2 D2 PHASER X光繞射儀 25 3.5 電化學特性分析 26 3.5.1 循環伏安法 26 3.5.2 恆電流充、放電量測 26 第四章 結果與討論 28 4.1 電極材料性質測試 28 4.1.1 負極材料Sn+SnS@CNT之形貌 28 4.1.2負極材料成分分析 36 4.2 Sn+SnS@CNT電極儲電行為 43 4.2.1 預鋰化負極 43 4.2.2 負電極循環伏安分析 51 4.2.3 負電極不同電流下的電容量(rate capacity) 56 第五章 結論 63 參考文獻 65

[1] A. K. Shukla, A. Banerjee, M. K. Ravikumar, A. Jalajakshi, “Electrochemical capacitors: Technical challenges and prognosis for future markets”, Electrochimica Acta, vol. 84, pp. 165-173 (2012)
[2] R. Kötz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, vol. 45, pp. 2483-2498 (2000)
[3] M. Winter, R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?”, Chemical Reviews, vol. 104, pp. 4245-4269 (2004)
[4] A. Burke, “Ultracapacitors: why, how, and where is the technology”, Journal of Power Sources, vol. 91, pp. 37-50 (2000)
[5] P. Sharma, T. S. Bhatti, “A review on electrochemical double-layer capacitors”, Energy Conversion and Management, vol. 51, pp. 2901-2912 (2010)
[6] E. Frackowiak, F. Béguin, “Carbon materials for the electrochemical storae of energy in capacitors”, Carbon, vol. 39, pp. 937-950 (2001)
[7] G. Wang, L. Zhang, J. Zhang, “A review of electrode materials for electrochemical supercapacitors”, Chemical Society Reviews, vol. 41, pp. 797-828 (2012)
[8] J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthium oxide as an electrode material for electrochemical capacitors”, Journal of The Electrochemical Society, vol. 142, pp. 2699-2703 (1995)
[9] K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, “Symmetric redox supercapacitor with conducting polyaniline electrodes”, Journal of Power Sources, vol. 103, pp. 305-309 (2002)
[10] A. Clemente, S. Panero, E. Spila, B. Scrosati, “Solid-state, polymer-based, redox capacitors”, Solid State Ionics, vol. 85,pp. 273-277 (1996)
[11] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, pp. 613-620 (1999)
[12] A. Burke, “R&D considerations for the performance and application of electrochemical capacitors”, Electrochimica Acta, vol. 53, pp. 1083-1091 (2007)
[13] P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors”, Nature materials, vol. 7, pp. 845-854 (2008)
[14] D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, Journal of Power Sources, vol. 74, pp. 99-107 (1998)
[15] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354, pp. 56-58 (1991)
[16] Q. L. Chen, K. H. Xue, W. Shen, F. F. Tao, S. Y. Yin, W. Xu, “Fabrication and Electrochemical Properties of Carbon Nanotube Array Electrode for Supercapacitors”, Electrochimica Acta ,vol. 24, pp. 4157-4161 (2004)
[17] C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes”, Applied Physics Letters , vol. 70, pp. 1480-1482 (1997)
[18] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, “Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes”, Advanced Funtional Materials, vol. 11, pp. 387-392 (2001)
[19] A. R. Kamali, D. J. Fray, “Tin-based materials as advanced anode materials for lithium ion batteries: A review”, Reviews on Advanced materials science, vol.27, pp.14-24 (2011)
[20] M. N. Obrovac, L. Christensen, “Structural changes in silicon anodes during lithium insertion/extraction”, Electrochemical and Solid-State Letters, vol.7, pp. A93-A96 (2004)
[21] M. J. Lindsay, G. X. Wang, H. K. Liu, “Al-based anode materials for Li-ion batteries”, Journal of Power Sources, vol. 119-121, pp. 84-87 (2003)
[22] C. K. Chan, X. F. Zhang, Y. Cui, “High capacity Li ion battery anodes using Ge nanowires”, Nano Letters, vol. 8, pp. 307-309 (2008)
[23] R. A. Huggins, “Lithium alloy negative electrodes”, Journal of Power Sources, vol. 81-82, pp. 13-19 (1999)
[24] M. Z. Xue, Z. W. Fu, “Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide”, Electrochemistry Communications, vol. 8, pp. 1250-1256 (2006)
[25] M. Dahbi, F. Ghamouss, T. V. François, D. Lemordant, M. Anouti, “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage”, Journal of Power Sources, vol. 196, pp. 9743-9750 (2011)
[26] Z. Chen, W. Q. Lu, J. Liu, K. Amine, “LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries”, Electrochimica Acta, vol. 51, pp. 3322-3326 (2006)
[27] W. Yang, W. Yang, A. Song, L. Gao, G. Sun, G. Shao, ” Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries”, Journal of Power Sources, vol. 348, pp. 175-182 (2017)
[28] C. Y. Wu, H. Yang, C.Y. Wu, J. G. Duh, “Flower-like structure of SnS with N-doped carbon via polymer additive for lithium-ion battery and sodium-ion battery”, Journal of Alloys and Compounds, vol. 750, pp. 23-32 (2018)
[29] 謝仲倫 ”錫銅奈米碳管電極及其鋰離子電容器”碩士論文,國立台灣科技大學化學工程研究所,pp.19-23 (2015)

QR CODE