簡易檢索 / 詳目顯示

研究生: 盧怡廷
I-Ting Lu
論文名稱: 開發搭載親水性藥物順鉑及疏水性藥物厚朴酚複合性高分子載體應用於癌症治療
Developing a Novel Polymeric Drug Carrier for Both Hydrophilic and Hydrophobic Anti-cancer Drugs
指導教授: 高震宇
Chen-Yu Kao
口試委員: 李曉屏
Shiao-Pieng Lee
蔡協致
Hsieh-Chih Tsai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 136
中文關鍵詞: 藥物傳輸系統親水性藥物疏水性藥物抗癌藥物微米顆粒
外文關鍵詞: Hydrophilic Drug, Hydrophobic Drug, Anti-cancer Drugs and Microparticles
相關次數: 點閱:443下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

順鉑(Cisplatin)為現今最具有潛力的抗癌藥物之一,最常應用於膀胱癌,睾丸癌,卵巢癌,在1978年時,成為鉑化合物中第一個被FDA認證的抗癌藥物。但治療後會產生的抗藥性及些許的副作用,且順鉑的微親水及微親油特性,使得順鉑不管在任何溶液中的溶解度都極低,也造成藥物包覆率偏低的現象。因此結合其他藥物的合併治療對於順鉑尤為重要,故將順鉑與厚朴酚(Magnolol)做結合。厚朴酚由厚朴樹皮萃取出之化合物,具有抗氧化、抗發炎、抗神經退化、保護肝臟及抗癌症等等不同的功效。但因具有懸浮性及分散性不佳之特性,故本研究將厚朴酚包覆於PEI-PLGA及PEI-PCADK奈米顆粒,順鉑包覆於海藻酸鈉微米顆粒,將兩顆粒利用電性使其相互結合後,探討高分子載體改質之結果對於藥物之包覆性、穩定釋放性,以及對於人類牙齦上皮癌細胞株(OECM-1)和子宮頸癌細胞(HELA)之抑制效果,並做載體間之比較。
研究結果顯示PEI成功接於PLGA及PCADK兩高分子之表面,並且維持顆粒之圓球狀奈米型態,Mag-PEI-PCADK-Alg-Cis能包覆較多之厚朴酚,Mag-PEI-PLGA-Alg-Cis具有包覆較多之順鉑之能力,兩者皆為使藥物穩定釋放之載體,Mag-PEI-PCADK-Alg-Cis對於抑制OECM-1及HELA效果不僅比Mag-PEI-PCADK佳,更優於另一載體Mag-PEI-PLGA-Alg-Cis,此結果顯示出對癌症的治療,Mag-PEI-PCADK-Alg-Cis比起市售之高分子所改良之載體更具有潛力的。


Cisplatin is one of the most potent anticancer agents used in the treatment of various solid tumors including bladder cancer, testicular cancer and ovarian cancer. It was the first FDA-approved platinum compound for cancer treatment in 1978. However, its use is mainly limited due to the drug resistance and considerable side effects. Also, precence drug is practically insoluble in organic solvent and slightly soluble in water makes the drug difficult to encapsulate into polymeric drug delivery system that can maintain optimum concentration for longer period of time. In order to improve the anti-cancer effects, combination therapy of cisplatin with other cancer drugs has been applied as novel therapeutic strategy for several human cancers. In this research, we combined it with magnolol. Magnolol, the major bioactive ingredient of Magnolia officinalis is known to have antioxidant, anti-inflammatory, anti-neurodegenerative, liver protecting and anti-cancer effects. However, the poor solubility and suspension capacity under physiological conditions have hindered its bioavailability and clinical efficacy. Based on this concept, we prepared the magnolol-loaded nanoparticles by using PEI-PLGA and PEI-PCADK, and cisplatin-loaded micro particles by alginate as drug carrier respectively. After preparing ionic complex of both alginate and PEI-PLGA/PCADK particles, we investigated their encapsulation efficiency, drug release, and the antitumor effect of drug carrier by PLGA or PCADK on oral epidermoid carcinoma cells (OECM-1) and cervical cancer (HELA).
The result showed that the surface of PLGA and PCADK is successfully modified by PEI, and maintained the particle morphology and size. Mag-PEI-PCADK-Alg-Cis particle and Mag-PEI-PLGA-Alg-Cis particle can load more magnolol and cisplatin respectively. Both of them showed stable release of both magnolol and cisplatin. The inhibitory effect to OECM-1 and HELA of Mag-PEI-PCADK-Alg-Cis particle is not only better than Mag-PEI-PCADK also than Mag-PEI-PLGA-Alg-Cis particle. These findings reveal a potential therapeutic strategy of oral and cervical cancer.

摘要 II ABSTRACT III 致謝 V 縮寫表 XVII 第一章 緒論 1 第二章 文獻回顧 3 2.1. 癌症(Cancers) 3 2.1.1. 口腔癌(Oral Cancer) 4 2.1.2. 子宮頸癌(Cervical Cancer) 5 2.2. 藥物傳輸系統(Drug delivery system, DDS) 6 2.3. 合併療法( Combination therapy) 7 2.3.1. 不同藥物組合於癌症治療 7 2.4. 順鉑(Cisplatin) 9 2.4.1. 順鉑之藥物動力學 10 2.4.2. 順鉑之抗癌機制 10 2.5. 厚朴酚(Magnolol) 12 2.5.1. 厚朴酚之藥物動力學 12 2.5.2. 厚朴酚抗癌機制 13 2.6. 親疏水性藥物包覆之策略 15 2.7. 高分子藥物載體 16 2.7.1. 高分子藥物載體於癌症的治療 17 2.7.2. 聚乳酸-甘醇酸(Poly(D,L-lactide-co-glycolide), PLGA) 18 2.7.3. 聚縮酮(Polyketal) 19 2.7.4. 海藻酸鈉(Sodium Alginate) 20 2.7.5. 聚乙烯亞胺(Polyethylenimine) 21 第三章 實驗材料與方法 23 3.1. 研究設計 23 3.1.1. 實驗理論 23 3.1.2. 實驗設計 23 3.1.3. 實驗架構與流程 25 3.2.實驗藥品、試劑與儀器設備 26 3.2.1. 合成與製備顆粒之實驗藥品試劑 26 3.2.2. 細胞培養之材料與試劑 27 3.2.3. 實驗分析儀器設備 28 3.3.Polyketal( PCADK)共聚物合成 29 3.4. 微米及奈米顆粒載體製備 30 3.4.1. 製備PLGA-Cisplatin MPs 30 3.4.2. 製備PLGA –Alginate -Cisplatin MPs 31 3.4.3. 製備PEI-PLGA/PCADK NPs 31 3.4.4. 製備Magnolol-PEI-PLGA/PCADK NPs 32 3.4.5. 製備PEI-PLGA/PCADK –Alginate MPs 33 3.4.6. 製備Magnolol-PEI-PLGA/PCADK –Alginate-Cisplatin MPs 33 3.4.7. 製備 DiI-PEI-PLGA/PCADK –Alginate MPs 34 3.5. 顆粒載體特性分析 35 3.5.1. 表面型態觀察 35 3.5.2. 顆粒藥物包覆效率評估 35 3.5.3. 顆粒成分分析 37 3.5.4. 粒徑分析 37 3.5.5. 表面電位測量 37 3.5.6. 體外釋放效率評估 38 3.6. 體外細胞實驗 39 3.6.1. 細胞培養條件及培養液配製 39 3.6.2. 凍存細胞活化 40 3.6.3. 細胞培養液更換 40 3.6.4. 細胞繼代培養 40 3.6.5. 細胞計數 41 3.6.6. 細胞凍存 41 3.6.7. 細胞毒性MTT分析 42 3.6.8. 細胞吞噬顆粒分析 42 3.6.9. 統計學分析 43 第四章 結果 44 4.1. 顆粒特性評估 44 4.1.1. 顆粒之表面型態分析 44 4.1.2. 藥物包覆效率評估 52 4.1.3. 顆粒成分分析 55 4.1.4. 顆粒粒徑分析 58 4.1.5. 表面電位測定 62 4.1.6. 體外釋放效率評估 65 4.2. 細胞實驗 73 4.2.1. 細胞型態 74 4.2.2. 細胞毒性分析 90 4.2.3. 細胞胞吞分析 101 第五章 討論 104 5.1. 顆粒之物化特性探討 104 5.2. 藥物傳輸系統對OECM-1及HELA之抑制能力探討 108 第六章 結論 111 第七章 參考資料 112

第七章 參考資料
1. Su, C.-C., et al., Chronic exposure to heavy metals and risk of oral cancer in Taiwanese males. Oral Oncology, 2010. 46(8): p. 586-590.
2. 行政院衛生福利部國民健康署, 101年癌症登記年報. 2015.
3. 行政院衛生福利部國民健康署, 96年癌症登記年報. 2000.
4. Kostova, I., Platinum complexes as anticancer agents. Recent Pat Anticancer Drug Discov, 2006. 1(1): p. 1-22.
5. Kelland, L., The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer, 2007. 7(8): p. 573-84.
6. Beck, D.J. and R.R. Brubaker, Effect of cis-platinum(II)diamminodichloride on wild type and deoxyribonucleic acid repair deficient mutants of Escherichia coli. J Bacteriol, 1973. 116(3): p. 1247-52.
7. Yang, S.C., et al., Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug Chem, 2008. 19(6): p. 1164-9.
8. 姜厚任, 聚唑/線性聚乙烯亞胺雙團聯共聚物製備奈米基因載體之研究. 2005.
9. 衛生福利部國民健康署, 2012年癌症登記報告. 2015.
10. Tiwari, R., Squamous cell carcinoma of the superior gingivolabial sulcus. Oral Oncology, 2000. 36(5): p. 461-465.
11. Wilson, B.C. and M.S. Patterson, The physics, biophysics and technology of photodynamic therapy. Physics in Medicine and Biology, 2008. 53(9): p. R61-R109.
12. 行政院衛生福利部國民健康署, 102年死因統計結果分析. 2014.
13. P ETER G. R OSE , M.D., B RIAN N. B UNDY , P H .D., E DWIN B. W ATKINS , M.D., J. T ATE T HIGPEN , M.D., G UNTHER D EPPE , M.D., and M.D. M ITCHELL A. M AIMAN , D ANIEL L. C LARKE -P EARSON , M.D., AND S AM I NSALACO , M.D., CONCURRENT CISPLATIN-BASED RADIOTHERAPY AND CHEMOTHERAPY FOR LOCALLY ADVANCED CERVICAL CANCER. The New England Journal of Medicine, 1999. 340: p. 1144-1153.
14. Hoffman, A.S., CHAPTER II.5.16 - Drug Delivery Systems, in Biomaterials Science (Third Edition), B.D.R.S.H.J.S.E. Lemons, Editor. 2013, Academic Press. p. 1024-1027.
15. Steve I. Shen, B.R.J., and Xiaoling Li, Design Of Controlled-release Drug Delivery Systems. New York: McGraw-Hill, 2006.
16. Allen, T.M., Drug Delivery Systems: Entering the Mainstream. Science, 2004. 303(5665): p. 1818-1822.
17. Steve I. Shen, B.R.J., and Xiaoling Li, DESIGN OF CONTROLLED-RELEASE DRUG DELIVERY SYSTEMS. Biomedical Engineering and Design Handbook, 2003: p. Chapter 22.
18. Kim, Y.H., et al., Paclitaxel, 5-fluorouracil, and cisplatin combination chemotherapy for the treatment of advanced gastric carcinoma. Cancer, 1999. 85(2): p. 295-301.
19. Sersa, G., et al., Electrochemotherapy with cisplatin: clinical experience in malignant melanoma patients. Clin Cancer Res, 2000. 6(3): p. 863-7.
20. Apostolou, P., et al., Anvirzel in combination with cisplatin in breast, colon, lung, prostate, melanoma and pancreatic cancer cell lines. BMC Pharmacol Toxicol, 2013. 14: p. 18.
21. Du, N., et al., Intrapleural combination therapy with bevacizumab and cisplatin for non-small cell lung cancermediated malignant pleural effusion. Oncol Rep, 2013. 29(6): p. 2332-40.
22. Byun, J.M., et al., Tetraarsenic oxide and cisplatin induce apoptotic synergism in cervical cancer. Oncol Rep, 2013. 29(4): p. 1540-6.
23. Lin, C.C., et al., Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway. Am J Respir Cell Mol Biol, 2013. 49(2): p. 241-50.
24. Le Chevalier, T., et al., Randomized study of vinorelbine and cisplatin versus vindesine and cisplatin versus vinorelbine alone in advanced non-small-cell lung cancer: results of a European multicenter trial including 612 patients. J Clin Oncol, 1994. 12(2): p. 360-7.
25. Andreadis, C., et al., 5-Fluorouracil and cisplatin in the treatment of advanced oral cancer. Oral Oncology, 2003. 39(4): p. 380-385.
26. Alberts, D.S., et al., Adriamycin/cis-platinum/cyclophosphamide combination chemotherapy for advanced carcinoma of the parotid gland. Cancer, 1981. 47(4): p. 645-8.
27. Kauffman, G.B., et al., Michele Peyrone (1813-1883), Discoverer of Cisplatin. Platinum Metals Review, 2010. 54(4): p. 250-256.
28. Desoize, B. and C. Madoulet, Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol Hematol, 2002. 42(3): p. 317-25.
29. Miao, L., et al., Nanoparticles with Precise Ratiometric Co-Loading and Co-Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer. Adv Funct Mater, 2014. 24(42): p. 6601-6611.
30. Shaloam Dasari, P.B.T., Cisplatin in cancer therapy Molecular mechanisms of action. European JournalofPharmacology740, 2014.
31. Alam, N., et al., Biodegradable polymeric system for cisplatin delivery: Development, in vitro characterization and investigation of toxicity profile. Materials Science and Engineering: C, 2014. 38: p. 85-93.
32. de Jongh, F.E., et al., Weekly high-dose cisplatin is a feasible treatment option: analysis on prognostic factors for toxicity in 400 patients. Br J Cancer, 2003. 88(8): p. 1199-206.
33. Al-Majed, A.A., Carnitine deficiency provokes cisplatin-induced hepatotoxicity in rats. Basic Clin Pharmacol Toxicol, 2007. 100(3): p. 145-50.
34. Kuhlmann, M.K., G. Burkhardt, and H. Kohler, Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant, 1997. 12(12): p. 2478-80.
35. Vaisman, A., et al., Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts. Biochemistry, 1999. 38(34): p. 11026-39.
36. Hernandez Losa, J., et al., Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene, 2003. 22(26): p. 3998-4006.
37. Lee, Y.J., et al., Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther, 2011. 130(2): p. 157-76.
38. Gou, M.L., et al., Preparation and characterization of honokiol nanoparticles. J Mater Sci Mater Med, 2008. 19(7): p. 2605-8.
39. Yu-Chiang, L., et al., Magnolol and honokiol isolated from magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochemical Pharmacology, 1994. 47(3): p. 549-553.
40. Tsai, Y.-C., et al., Beneficial effects of magnolol in a rodent model of endotoxin shock. European Journal of Pharmacology, 2010. 641(1): p. 67-73.
41. Shen, J.-L., et al., Honokiol and Magnolol as Multifunctional Antioxidative Molecules for Dermatologic Disorders. Molecules, 2010. 15(9): p. 6452-6465.
42. 周俊良, 以大鼠急性肺損傷模式評估包覆厚朴酚微奈米顆粒之抗發炎能力. 醫學工程研究所, 2014. 國立台灣科技大學:台北市.
43. Lee, Y.-J., et al., Therapeutic applications of compounds in the Magnolia family. Pharmacology & Therapeutics, 2011. 130(2): p. 157-176.
44. Tsai, T.-H., et al., Pharmacokinetics of honokiol after intravenous administration in rats assessed using high performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 1994. 655(1): p. 41-45.
45. Tsai, T.H., C.J. Chou, and C.F. Chen, Pharmacokinetics and Brain Distribution of Magnolol in the Rat after Intravenous Bolus Injection. Journal of Pharmacy and Pharmacology, 1996. 48(1): p. 57-59.
46. Kuo, D.-H., et al., Inhibitory Effect of Magnolol on TPA-Induced Skin Inflammation and Tumor Promotion in Mice. Journal of Agricultural and Food Chemistry, 2010. 58(9): p. 5777-5783.
47. Lee, S.-K., et al., Obovatol inhibits colorectal cancer growth by inhibiting tumor cell proliferation and inducing apoptosis. Bioorganic & Medicinal Chemistry, 2008. 16(18): p. 8397-8402.
48. Hwang, E.-S. and K.-K. Park, Magnolol Suppresses Metastasis via Inhibition of Invasion, Migration, and Matrix Metalloproteinase-2/-9 Activities in PC-3 Human Prostate Carcinoma Cells. Bioscience, Biotechnology, and Biochemistry, 2010. 74(5): p. 961-967.
49. Yang, S.-E., et al., Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. British Journal of Pharmacology, 2003. 138(1): p. 193-201.
50. Ma, T., Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. International Journal of Oncology, 2011.
51. Ledgerwood, E.C. and I.M. Morison, Targeting the apoptosome for cancer therapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 2009. 15(2): p. 420-424.
52. Chen, X.r., et al., Honokiol: a promising small molecular weight natural agent for the growth inhibition of oral squamous cell carcinoma cells. International Journal of Oral Science, 2011. 3(1): p. 34-42.
53. Vrignaud, S., J.-P. Benoit, and P. Saulnier, Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials, 2011. 32(33): p. 8593-8604.
54. Chitkara, D. and N. Kumar, BSA-PLGA-Based Core-Shell Nanoparticles as Carrier System for Water-Soluble Drugs. Pharmaceutical Research, 2013. 30(9): p. 2396-2409.
55. Tsai, T., et al., Protective effect of magnolol-loaded polyketal microparticles on lipopolysaccharide-induced acute lung injury in rats. J Microencapsul, 2016: p. 1-11.
56. Freiberg, S. and X.X. Zhu, Polymer microspheres for controlled drug release. Int J Pharm, 2004. 282(1-2): p. 1-18.
57. Lu, Y. and S.C. Chen, Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev, 2004. 56(11): p. 1621-33.
58. Nicolazo, C., et al., Compactibility study of calcium phosphate biomaterials. Biomaterials, 2003. 24(2): p. 255-62.
59. Wang, X., et al., Advances of Cancer Therapy by Nanotechnology. Cancer Res Treat, 2009. 41(1): p. 1-11.
60. Kohane, D.S., et al., Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. Journal of Biomedical Materials Research Part A, 2006. 77A(2): p. 351-361.
61. Kohane, D.S., Microparticles and nanoparticles for drug delivery. Biotechnology and Bioengineering, 2007. 96(2): p. 203-209.
62. Danhier, F., et al., PLGA-based nanoparticles: an overview of biomedical applications. J Control Release, 2012. 161(2): p. 505-22.
63. Lee, S., et al., Solid polymeric microparticles enhance the delivery of siRNA to macrophages in vivo. Nucleic Acids Res, 2009. 37(22): p. e145.
64. Sy, J.C., et al., Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater, 2008. 7(11): p. 863-8.
65. Draget, K.I., Simensen, M. K. 1, Onsoyen, E.1 & O. Smidsr0d, Gel strength of Ca-limited alginate gels made in situ. 1993: p. 563-565.
66. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
67. Cheng, Y.H., S.H. Yang, and F.H. Lin, Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials, 2011. 32(29): p. 6953-61.
68. Krasaekoopt, W., B. Bhandari, and H.C. Deeth, Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT- and conventionally treated milk during storage. LWT - Food Science and Technology, 2006. 39(2): p. 177-183.
69. S. Bhunchu, P.R., Biopolymeric alginate-chitosan nanoparticles as drug delivery carriers for cancer therapy. Pharmazie, 2014. 69: p. 563–570.
70. Godbey, W.T., K.K. Wu, and A.G. Mikos, Poly(ethylenimine) and its role in gene delivery. J Control Release, 1999. 60(2-3): p. 149-60.
71. von Harpe, A., et al., Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Control Release, 2000. 69(2): p. 309-22.
72. Yeo, Y. and K. Park, Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res, 2004. 27(1): p. 1-12.
73. De, S. and D. Robinson, Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release, 2003. 89(1): p. 101-12.
74. Zohreh Rezvani Amin, M.R., Hossein Eshghi, Ali Dehshahri, Mohammad and Ramezani, The Effect of Cationic Charge Density Change on Transfection Efficiency of Polyethylenimine. Iran J Basic Med Sci, 2013. 16: p. 150-56.
75. Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3(4): p. 1377-1397.

QR CODE