簡易檢索 / 詳目顯示

研究生: 林偉翔
Wei-shiang Lin
論文名稱: 製備與功能化Zn-CuInS2水溶性量子點於生物顯影及抗癌藥物載體
Preparation and Surface Functionalization of Zn-CuInS2 Quantum Dots for Bioimaging and Anticancer Drug Delivery Applications
指導教授: 張家耀
Jia-yaw Chang
口試委員: 王勝盟
Sheng-meng Wang
何郡軒
Jinn-hsuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 107
中文關鍵詞: I-III-VI族量子點水相量子點藥物釋放藥物載體胺基苯硼酸細胞顯影
外文關鍵詞: quantum dot, doxorubicin, drug delivering, drug release, phenylboronic acid, cell Imaging
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文結合了奈米合成技術與生物醫學應用,將低毒性之量子點應用於細胞體上,作為顯影標靶與藥物載體之功能。第一部分的實驗主要是以水為溶劑來合成Zn-CuInS2 (ZCIS)量子點,並藉由優化Cu、In與Zn等前驅物比例,提高量子點之量子產率,以及使用雙穩定劑穀胱甘肽與聚丙烯酸鈉來使量子點能夠在水中穩定地合成出來;接著將核層量子點以無機材料ZnS包覆而形成核殼型量子點ZCIS/ZnS,可明顯提高量子點的螢光量子產率至16.8%,並利用穿透式電子顯微鏡、X光繞射儀與螢光光譜儀來進行量子點組成、結構、光學性質之分析。第二部分則是將量子點功能化,使用胺基苯硼酸修飾於量子點表面,提高量子點之生物相容性,並以共軛焦距顯微鏡偵測材料於Hela細胞體內之顯影效果。最後則是將功能化之量子點作為奈米藥物載體,利用抗癌藥物DOX與量子點中Zn2+離子之配位關係,將DOX裝載於量子點上,並於癌細胞之酸性環境中釋放出DOX,以達到抑制癌細胞之效果。


    In this research, we investigate the synthesis process of quantum dots and its biomedical applications on cell imaging along with delivering anticancer drug. In the beginning, we directly synthesize water-soluble Zn-CuInS2 quantum dots (ZCIS QDs) facilitated by polyacrylic acid and L-glutathione as stabilizing and reactivity-controlling agents. The optimization of copper, indium and zinc ratio to improve the quantum yields of ZCIS QDs also become important part to be improved on this research. Moreover, by ZnS coating on the surface of ZCIS QDs, the quantum yield value can be increased significantly to 16.8%. We further conjugate 3-aminophenylboronicacid as cancer targeting agents onto ZCIS/ZnS QDs via formation the cyclic boronate ester with sialic acid on the membrane of cell. Beside evaluate its imaging potential with confocal microscopy, the competence of ZCIS/ZnS QDs as platform for targeted and pH responsive intracellular delivery of an anticancer drug also improved. Therefore, Doxorubicin is loaded onto the APBA functionalized ZCIS/ZnS QDs by formation of metal complexes with Zn2+ on the QDs. The conjugation of DOX on ZCIS/ZnS@APBA QDs can be maintained at physiological condition, but directly break in the mildly acidic condition like on intracellular environment of cancer cells. Hence, this approach can provide nanovector-based material as simultaneous targeting and therapy of cancer cells.

    摘要 Abstract 致謝 總目錄 圖目錄 表目錄 第一章、序論 1.1前言 1.2研究動機與內容 第二章、文獻回顧 2.1 奈米材料之基本特性 2.1.1量子尺寸效應 2.1.2表面效應 2.1.3量子穿隧效應 2.1.4奈米晶體之能隙 2.1.5量子侷限效應 2.1.6螢光與磷光理論 2.2量子點製備與與發展 2.2.1量子點之發展 2.2.2量子點之應用 2.2.3 I-III-VI族量子點介紹與文獻回顧 2.2.4靶向性功能化之量子點 2.3奈米粒子在生物醫學上之文獻回顧 2.3.1量子點之毒性探討 2.3.2生物感測 2.3.3藥物載體與治療 2.3.4生物顯影與光治療 第三章、實驗 3.1 實驗藥品 3.2 實驗量測儀器 3.3 實驗步驟 3.3.1水相ZCIS量子點合成 3.3.2水相ZCIS/ZnS量子點合成 3.3.3 水相量子點ZCIS/ZnS與胺基苯硼酸鍵結之合成 3.3.4抗癌藥物DOX與水相量子點ZCIS/ZnS@APBA之合成 3.3.5細胞培養 3.4樣品分析 第四章、結果與討論 4.1 ZCIS核層量子點之製備與合成 4.1.1 ZCIS量子點實驗介紹 4.1.2 ZCIS量子點在Cu與Zn前驅物參數調整之最佳化量子產率探討 4.1.3 ZCIS量子點在In與Zn前驅物參數調整之量子產率最佳化探討 4.1.4 ZCIS量子點穩定劑選擇之量子產率最佳化探討 4.1.5 ZCIS量子點之螢光顏色可調性探討 4.2 ZCIS/ZnS核殼量子點製備與合成 4.2.1 ZCIS/ZnS量子點實驗設計 4.2.2 ZCIS/ZnS量子點前驅物參數調整之量子產率最佳化探討 4.3 ZCIS/ZnS量子點特性分析 4.4 Cd-CuInS2、Ga-CuInS2與Al-CuInS2量子點之製備與合成 4.4.1 Cd-CuInS2量子點之製備與合成分析 4.4.2 Ga-CuInS2量子點之製備與合成分析 4.4.3 Al-CuInS2量子點之製備與合成分析 4.5 ZCIS/ZnS量子點功能化合成之鑑定分析 4.5.1 ZCIS/ZnS量子點與APBA接合之製備與分析 4.5.2 ZCIS/ZnS@APBA量子點對細胞之毒性測試 4.5.3功能化ZCIS/ZnS量子點在生物顯影上之應用 4.6 ZCIS/ZnS@APBA功能化量子點作為藥物載體之鑑定分析 4.6.1 ZCIS/ZnS@APBA量子點載體與DOX抗癌藥物之製備與分析 4.6.2 ZCIS/ZnS@APBA-DOX奈米藥物載體之生物應用 第五章、結論與未來展望 參考文獻

    [1] J. Zhang, R. G. Xie and W. S. Yang, Chem. Mater., 2011, 23, 3357.
    [2] S. Sarkar, N. S. Karan and N. Pradhan, Angew. Chem., Int. Ed., 2011, 50, 6065.
    [3] J. Feng, M. Sun, F. Yang and X. R. Yang, Chem. Commun.,2011, 47, 6422.
    [4] E. Cassette, T. Pons, C. Bouet, M. Helle, L. Bezdetnaya,F. Marchal and B. Dubertret, Chem. Mater., 2010, 22, 6117.
    [5] G. Manna, S. Jana, R. Bose and N. Pradhan, J. Phys. Chem. Lett., 2012, 3, 2528.
    [6] 羅吉宗編撰,奈米科技導論,全華圖書股份有限公司,台灣
    [7] G. Sun,The Intersubband Approach to Si-based Lasers,Advances in Lasers and Electro Optics,Nelson Costa and Adolfo Cartaxo (Ed.), 2010.
    [8] A. P. Alivisatos, Science, 1996, 271, 933.
    [9] Chemical Education Journal (CEJ), Vol. 13, No. 2, 2009.
    [10] R. Kubo, J. Phys. Soc. jpn., 1962, 17, 975.
    [11] X. Peng, L. Manna, W. Yang, J. Wickham, E. C. Scher, A. Kadavanich, A. P. Alivisatos, Nature, 2000, 404, 59.
    [12] R. Rossetti, S. Nakahara, and L. E. Brus, J. Chem. Phys., 1983, 79, 1086.
    [13] C. B. Murray, D. J. Noms, and M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706.
    [14] A. Mews, A. Eychmiiller, M. Giersig, D. Schooss, and H. Weller, J. Phys. Chem., 1994, 98, 934.
    [15] W. T. Wu, T. Zhou, A. Berliner, P. Banerjee and S. Q. Zhou, Angew. Chem. Int. Ed., 2010, 49, 1.
    [16] Q. Ma, E. Ha, F. P. Yang and X. G. Su, Anal. Chim. Acta, 2011, 701, 60.
    [17] Y. Gao, H. Huang, J. J. Hu, S. M. Shah and X. G. Su, Talanta,2011, 85, 1075.
    [18] S. Liu, F. Shi, L. Chen and X. Su, Analyst, 2013, 138, 5819.
    [19] S. Liu, F. Shi, L. Chen and X. Su, Talanta, 2013, 116, 870.
    [20] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulović, Nano Letters, 2009, 9, 2532.
    [21] http://www.qled-info.com/introduction/ , 2014/4/23.
    [22] S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi and J. V. Frangioni, Nat. Biotechnol., 2004, 22, 93.
    [23] J. Thomas, D. B. Sherman, T. J. Amiss, S. A. Andaluz and J. B. Pitner, Bioconjugate Chem., 2007, 18, 1841.
    [24] S. K. Vashist, R. Tewari, R. P. Bajpai, L. M. Bharadwaj and R. Raiteri, azonano, 2006.
    [25] S. Mishra, STRUCTURAL, ELECTRONIC AND OPTICALPROPERTIES OF CHALCOPYRITE TYPESEMICONDUCTORS, Thesis, 2012.
    [26] P. M. Allen and M. G. Bawendi, J. Am. Chem. Soc., 2008, 130, 9240.
    [27] R. G. Xie, M. Rutherford and X. G. Peng, J. Am. Chem. Soc.,2009, 131, 5691
    [28] J. Park and S. W. Kim, J. Mater. Chem., 2011, 21, 3745
    [29] J. Y. Chang, G. Q. Wang, C. Y. Cheng, W. X. Lin and J. C. Hsu, J. Mater. Chem., 2012, 22, 10609.
    [30] B. K. Chen, H. Z. Zhong and B. S. Zou, Prog. Chem., 2011, 23, 2276.
    [31] X. Yuan, J. L. Zhao, P. T. Jing, W. J. Zhang, H. B. Li, L. G. Zhang, X. H. Zhong and Y. Masumoto, J. Phys. Chem. C, 2012, 116, 11973.
    [32] M. Kruszynska, H. Borchert, J. Parisi and J. Kolny-Olesiak, J. Am. Chem. Soc., 2010,132, 15976.
    [33] X. L. Wang, D. C. Pan, D. Weng, C. Y. Low, L. Rice, J. Y. Han and Y. F. Lu, J. Phys. Chem. C, 2010, 114, 17293.
    [34] D. C. Pan, X. L. Wang, Z. H. Zhou, W. Chen, C. L. Xu and Y. F. Lu, Chem. Mater., 2009, 21, 2489.
    [35] P. C. Dai, X. N. Shen, Z. J. Lin, Z. Y. Feng, H. Xu and J. H. Zhan, Chem. Commun., 2010, 46, 5749.
    [36] Q. H. Liu, Z. C. Zhao, Y. H. Lin, P. Guo, S. J. Li, D. C. Pan and X. L. Ji, Chem. Commun., 2011, 47, 964.
    [37] K. T. Yong, I. Roy, R. Hu, H. Ding, H. X. Cai, J. Zhu, X. H. Zhang, E. J. Bergey and P. N. Prasad, Integr. Biol., 2010, 2, 121.
    [38] T. Pons, E. Pic, N. Lequeux, E. Cassette, L. Bezdetnaya, F. Guillemin, F.Marchal and B. Dubertret, ACS Nano, 2010, 4, 2531.
    [39] T. Omata, K. Nose, and S. Otsuka-Yao-Matsuo, J. Appl. Phys., 2009, 105, 073106..
    [40] Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie and Y. Qian, Inorg. Chem., 2000, 39, 2964.
    [41] S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger and A. F. Hepp, J. Phys. Chem. B, 2004, 108, 12429.
    [42] L. Tian, H. I. Elim, W. Ji and J. J. Vittal, Chem. Commun., 2006, 4276.
    [43] L. Tian, J. J. Vittal, New J. Chem., 2007, 31, 2083.
    [44] T. Torimoto, T. Adachi, K. Okazaki, M. Sakuraoka,T. Shibayama, B. Ohtani, A. Kudo and S. Kuwabata, J. Am. Chem. Soc., 2007, 129, 12388.
    [45] T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo and S. Kuwabata, Chem. Commun., 2010, 46, 2082.
    [46] T Ogawa, T Kuzuya, Y. Hamanaka and K. Sumiyama, J. Mater. Chem., 2010, 20, 2226.
    [47] J. Y Chang, G. Q. Wang, C. Y. Cheng, W. X. Lin and J. C. Hsu, J. Mater. Chem., 2012, 22, 10609.
    [48] W. Zhang and X. Zhong, Inorg. Chem., 2011, 50, 4065.
    [49] X. Tang, W. Cheng, E. S. G. Choo and J. Xue, Chem. Commun., 2011, 47, 5217.
    [50] N. Chan. W. Guo, Y. Tu, C. Dong, B. Zhang, C. Hu and J. Chang, Theranostics, 2013, 3, 99.
    [51] S. Liu, H. Zhang, Y. Qiao and X. Su, RSC Advances, 2012, 2, 819.
    [52] Z. Luo, H. Zhang, J. Huang and X. Zhong, Journal of Colloid and Interface Science, 2012, 377, 27.
    [53] Y. Chen, S. Li, L. Huang and D. Pan, Nanoscale, 2014, 6, 1295.
    [54] K.-K. Song, S. Lee, Curr. Appl. Phys., 2001, 1, 169.
    [55] M. J. Murcia, D. L. Shaw, E. C. Long, and C. A. Naumann, Opt. Commun., 2008, 7, 1771.
    [56] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano Lett., 2001, 1, 207.
    [57] S. F. Wuister, C. de Mello Donegá and A. Meijerink, J. Phys. Chem. B, 2004, 108, 17393.
    [58] X. H. Zhong, Y. Y. Feng, W. Knoll, M. Y. Han, J. Am. Chem. Soc., 2003, 125, 13559.
    [59] M. D. Regulacio and M.-Y. Han, Accounts Chem. Res., 2010, 43, 621.
    [60] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, M. Miyazaki and H. Maeda, Chem. Mater., 2006, 18, 3330.
    [61] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B, 1997, 101, 9463.
    [62] X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc.,1997, 119, 7019.
    [63] P. Reiss, J. Bleuse, and A. Pron, Nano Lett., 2012, 2, 781.
    [64] D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson, H. Weller, J. Phys. Chem. B, 2004, 108, 18826.
    [65] Y. Chen, S. Li, L. Huang, and D. Pan, Inorganic Chemistry, 2013, 52, 7819.
    [66] L. Li, A. Pandey, D. J. Werder, B. P. Khanal, J. M. Pietryga, and Vi. I. Klimov, J. Am. Chem. Soc., 2010, 133, 1176.
    [67] D. C. Pan, L. J. An, Z. M. Sun, W. Hou, Y. Yang, Z. Z. Yang and Y. F Lu, J. Am. Chem. Soc. , 2008, 130, 5620.
    [68] Q. Liu, Z. Zhao, Y. Lin, P. Guo, S. Li, D. Pan and X. Ji, Chem. Commun. , 2011, 47, 964.
    [69] P. Reiss, M. Protiere, and L. Li, Small, 2009, 5, 154..
    [70] A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, and D. L. Feldheim, J. Am. Chem. Soc., 2003, 125, 4700.
    [71] B. C. Lagerholm, M. M. Wang, L. A. Ernst, D. H. Ly, H. J. Liu, M. P. Bruchez and A. S. Waggoner, Nano Lett., 2004, 4, 2019.
    [72] B. R. Liu , Y. W. Huang , J. G. Winiarz , H. J. Chiang and H. J. Lee, Biomaterials,2011, 32, 3520.
    [73] Y. Yoneda, M. Hieda, E. Nagoshi, and Y. Miyamoto, Cell Struct. Funct., 1999, 24, 425.
    [74] F. Chen and D. Gerion, Nano Lett., 2004, 4, 1827.
    [75] T. Pellegrino, W. J. Parak, R. Boudreau, M. A. L. Gros, D. Gerion, A. P. Alivisatos and C. A. Larabell, Differentiation, 2003, 71, 542.
    [76] W. J. Parak, R. Boudreau, M. L. Gros, D. Gerion, D. Zanchet, C. M. Micheel, S. C. Williams, A. P. Alivisatos and C. Larabell, Adv. Mater., 2002, 14, 882.
    [77] K. Hanaki, A. Momo, T. Oku, A. Komoto, S. Maenosono, Y. Yamaguchi and K. Yamamoto, Biochem. Biophys. Res. Commun., 2003, 302, 496.
    [78] Q. Wang, F. Ye, T. Fang, W. Niu, P. Liu, X. Min, X. Li, Journal of Colloid and Interface Science, 2011, 35, 9.
    [79] Conjugate comprising a folic acid antagonist and a carrier , United States Patent 6720304.
    [80] D. J. Bharali, D. W. Lucey, H. Jayakumar, H. E. Pudavar, and P. N. Prasad, J. Am. Chem. Soc., 2005, 127, 11364.
    [81] A. Liu, S. Peng, J. C. Soo, M. Kuang, P. Chen, and H. Duan, Analytical Chemistry, 2011, 83, 1124.
    [82] W. Zhang, X. W. He, Y. Q. Yang, W.Y. Li and Y. K Zhang, J. Mater. Chem. B, 2013, 1, 347.
    [83] R. Hardman, Environmental Health Perspectives, 2006, 114, 165.
    [84] N. Chen, Y. He, Y. Su, X. Li, Q. Huang, H. Wang, X. Zhang, R. Tai and C. Fan, Biomaterials, 2012, 33, 1238.
    [85] M. Bottrill and M. Green, Chem. Commun., 2011, 47, 7039.
    [86] K. T. Yong, W. C. Law, R. Hu, L. Ye, L. Liu, M. T. Swihart and P. N. Prasad, Chem. Soc. Rev., 2013, 42, 1236.
    [87] A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, Nano Lett., 2004, 4, 11.
    [88] J. Lovic, H. S. Bazzi, Y. Cuie, G. R. A. Fortin, F. M. Winnik, D. Maysinger, J Mol Med, 2005, 82, 377.
    [89] T. S. Hauck, R. E. Anderson, H. C. Fischer, S. Newbigging, and W. C. W. Chan, Small, 2010, 6, 138.
    [90] I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher and J. M. Mauro, Nat. Mater., 2003, 2, 630.
    [91] E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon and H. S. Kim, J. Am. Chem. Soc., 2005, 127, 3270.
    [92] R. Alam, J. Zylstra, D. M. Fontaine, B. R. Branchini and M. M. Maye, Nanoscale, 2013, 5, 5303.
    [93] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit and R. Langer, Nat. Nanotechnol., 2007, 2, 751.
    [94] R. A. Petros and J. M. De Simone, Nat. Rev. Drug Discovery, 2010, 9, 615.
    [95] M. De, P. S. Ghosh and V. M. Rotello, Adv. Mater., 2008, 20, 4225.
    [96] Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei and C. Burda, J. Am. Chem. Soc., 2008, 130, 10643.
    [97] S. H. Medina and M. E. H. El-Sayed, Chem. Rev., 2009, 109, 3141.
    [98] T. L. Doane and C. Burda, Chem. Soc. Rev., 2012, 41, 2885.
    [99] Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro and K. Kataoka, Bioconjugate Chem., 2005, 16, 122.
    [100] G. Helmlinger, F. Yuan, M. Dellian and R. K. Jain, Nat. Med., 1997, 3, 177.
    [101] S. Angelos, N. M. Khashab, Y.-W. Yang, A. Trabolsi, H. A. Khatib, J. F. Stoddart and J. I. Zink, J. Am. Chem. Soc., 2009, 131, 12912.
    [102] N. M. Khashab, M. E. Belowich, A. Trabolsi, D. C. Friedman, C. Valente, Y. Lau, H. A. Khatib, J. I. Zink and J. F. Stoddart, Chem. Commun., 2009, 5371.
    [103] L. Du, S. Liao, H. A. Khatib, J. F. Stoddart and J. I. Zink, J. Am. Chem. Soc., 2009, 131, 15136.
    [104] F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo and G. Zhu, J. Am. Chem. Soc., 2011, 133, 8778.
    [105] X. Zhang, L. Meng, Q. Lu, Z. Fei and P. J. Dyson, Biomaterials, 2009, 30, 6041.
    [106] H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji, J. I. Zink and A. E. Nel, ACS Nano, 2010, 4, 4539.
    [107] X. Zhang, L. Clime, H. Roberge, F. Normandin, L. Yahia, E. Sacher and T. Veres, J. Phys. Chem. C, 2011, 115, 1436.
    [108] D. Pornpattananangkul, S. Olson, S. Aryal, M. Sartor, C.-M. Huang, K. Vecchio and L. Zhang, ACS Nano, 2010, 4, 1935.
    [109] S. Dhar, W. L. Daniel, D. A. Giljohann, C. A. Mirkin and S. J. Lippard, J. Am. Chem. Soc., 2009, 131, 14652.
    [110] M. Bikram and J. L. West, Expert Opin. Drug Delivery, 2008, 5, 1077.
    [111] L. E. Strong and J. L. West, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2011, 3, 307.
    [112] S. R. Sershen, S. L. Westcott, N. J. Halas and J. L. West, J. Biomed. Mater. Res., 2000, 51, 293.
    [113] J. Raula, J. Shan, M. Nuopponen, A. Niskanen, H. Jiang, E. I. Kauppinen and H. Tenhu, Langmuir, 2003, 19, 3499.
    [114] J. Guo, W. Yang, Y. Deng, C. Wang and S. Fu, Small, 2005, 1, 737.
    [115] T. Fujigaya, T. Morimoto, Y. Niidome and N. Nakashima, Adv. Mater., 2008, 20, 3610.
    [116] H. Takahashi, Y. Niidome and S. Yamada, Chem. Commun., 2005, 2247.
    [117] J. M. Slocik, F. Tam, N. J. Halas and R. R. Naik, Nano Lett., 2007, 7, 1054.
    [118] B. Duncan, C. Kim and V. M. Rotello, J. Controlled Release, 2010, 148, 122.
    [119] K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y. W. Yang, J. I. Zink and J. F. Stoddart, J. Am. Chem. Soc., 2008, 130, 2382.
    [120] J. Jung, A. Solanki, K. A. Memoli, K.-I. Kamei, H. Kim, M. A. Drahl, L. J. Williams, H.-R. Tseng and K.-B. Lee, Angew. Chem., Int. Ed., 2010, 49, 103.
    [121] M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia and E. Ruoslahti, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 12617.
    [122] H. M. Xiong, Y. Xu, Q. G. Ren and Y. Y. Xia, J. Am. Chem. Soc., 2008, 130, 7522.
    [123] K. T. Yong, H. Ding, I. Roy, W. C. Law, E. J. Bergey, A. Maitra and P. N. Prasad, ACS Nano, 2009, 3, 502.
    [124] B. Mao, C.-H. Chuang, J. Wang and C. Burda, J. Phys. Chem. C, 2011, 115, 8945.
    [125] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun and B. Yang, Chem. Commun., 2011, 47, 6858.
    [126] K. T. Yong, H. Ding, I. Roy, W. C. Law, E. J. Bergey, A. Maitra and P. N. Prasad, ACS Nano, 2009, 3, 502.
    [127] S. Hu and L. H. V. Wang, J. Biomed. Opt., 2010, 15, 011101.
    [128] C. Kim, C. Favazza and L. V. Wang, Chem. Rev., 2010, 110, 2756.
    [129] V. Ntziachristos, Nat. Methods, 2010, 7, 603.
    [130] D. Graham-Rowe, Nat. Photonics, 2009, 3, 123.
    [131] Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica and L. V. Wang, Nano Lett., 2004, 4, 1689.
    [132] Y. S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan and S. Emelianov, Nano Lett., 2011, 11, 348.
    [133] C. Kim, C. Favazza and L. V. Wang, Chem. Rev., 2010, 110, 2756.
    [134] Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O’Neal, G. Stoica and L. V. Wang, Nano Lett., 2004, 4, 1689.
    [135] H. F. Zhang, K. Maslov, G. Stoica and L. V. Wang, Nat. Biotechnol., 2006, 24, 848.
    [136] A. Agarwal, S. W. Huang, M. O’Donnell, K. C. Day, M. Day, N. Kotov and S. Ashkenazi, J. Appl. Phys., 2007, 102, 064701.
    [137] D. E. J. G. J. Dolmans, D. Fukumura and R. K. Jain, Nat. Rev. Cancer, 2003, 3, 380.
    [138] J. P. Celli, B. Q. Spring, I. Rizvi, C. L. Evans, K. S. Samkoe, S. Verma, B. W. Pogue and T. Hasan, Chem. Rev., 2010, 110, 2795.
    [139] Y. Cheng and C. Burda, in Comprehensive Nanoscience and Technology, ed. D. L. Andrews, G. D. Scholes and G. P. Wiederrecht, Academic Press, Oxford, 2011, vol. 2, ch. 2.01 Nanoparticles For Photodynamic Therapy, pp. 1.
    [140] W. J. Syu, H. P. Yu, C. Y. Hsu, Y. C. Rajan, Y. H. Hsu ,Y. C. Chang , W. Y. Hsieh, C. H. Wang and P. S. Lai, Small, 2012, 8, 2060.
    [141] J.-Y. Chen, Y.-M. Lee, D. Zhao, N.-K. Mak, R. N.-S. Wong, W.-H. Chan and N.-H. Cheung, Photochem. Photobiol., 2010, 86, 431.
    [142] A. Rakovich, D. Savateeva, T. Rakovich, J. F. Donegan, Y. P. Rakovich, V. Kelly, V. Lesnyak and A. Eychmu‥ ller, Nanoscale Res. Lett., 2010, 5, 753.
    [143] A. Rockett and R. W. Birkmire., J. Apply Phys, 1991, 70, R81.
    [144] K. Nose, T. Omata and S. Otsuka-Yao-Matsuo, J. Phys. Chem. C, 2009, 113, 3455.
    [145] S. B. Zhang, S. H. Wei and A. Zunger, Phys. Rev. B, 1998, 57, 9642.
    [146] H. Zhong, Y. Zhou, M. Ye, Y. He, J. Ye, C. He, C. Yang and Li, Y. Chem. Mater. 2008, 20, 6434.
    [147] R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533.
    [148] Y. Y. Chen, S. J. Li, L. J. Huang and D. C. Pan, Inorg. Chem., 2013, 52, 7819.
    [149] K. T. Kuo, S. Y. Chen, B. M. Cheng and C. C. Lin, Thin Solid Films, 2008, 517, 1257.
    [150] J. Park and S. W. Kim, J. Mater. Chem., 2011, 21, 3745.
    [151] F. Muhammad, M. Guo, Y. Guo, W. Qi, F. Qu, F. Sun, H. Zhaod and G. Zhu, J. Mater. Chem., 2011, 21, 13406.
    [152] R. L. Momparler, M. Karon, S. E. Siegel and F. Avila, Cancer Res.,1976, 36, 2891.

    無法下載圖示 全文公開日期 2019/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE