簡易檢索 / 詳目顯示

研究生: 洪櫻鳳
Fifi Hartanto
論文名稱: 過氧化氫和碘化鉀作為發泡劑和催化劑對無機聚合物發泡材工程性質之影響
Effects of Hydrogen Peroxide and Potassium Iodide as Foaming Agent and Catalyst on Engineering Properties of Foamed Geopolymer
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 楊仲家
Chung-Chia Yang
李有豐
Yeou-Fong Li
施正元
Jeng-Ywan Shih
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 124
中文關鍵詞: 過氧化氫十二烷基硫酸鈉碘化鉀矽酸鈉模數泡沫無機聚合物孔隙率
外文關鍵詞: hydrogen peroxide, sodium dodecyl sulfate, sodium silicate modulus, foamed geopolymer, porosity, pore size distribution
相關次數: 點閱:213下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

通過化學發泡法研究過氧化氫(H2O2)作為發泡劑,十二烷基硫酸鈉(SDS) 作為發泡穩定劑,碘化鉀(KI)作為發泡劑的催化劑以及矽酸鈉模數對發泡無機聚合物工程性能的影響。進行數次試驗求得其掃描電子顯微鏡、乾密度、熱傳導係數、抗壓強度、吸水率和吸水性、孔隙率、孔徑分佈和微觀結構分析等目標性能。通過ImageJ圖像分析儀獲得孔徑分佈。還分析了泡沫無機聚合物的孔隙特徵與工程性能之間的相關性。泡沫無機聚合物的乾密度,抗壓強度和熱傳導係數隨著過氧化氫的增加而降低,並導致較大孔體積的快速發展,因此總孔隙率和吸水效果更高。十二烷基硫酸鈉有助於產生更多的氣泡,並具有均勻的層次。碘化鉀可以用作於1.5%過氧化氫的催化劑。將所得數據分析後,通過在SEM圖像中觀察到之大孔隙。工程性質與泡沫無機聚合物的孔結構參數具有良好的相關性。當使用十二烷基硫酸鈉(SDS)作為穩定劑時,過氧化氫的最佳用量為2%和1.5%。研究表明,使用3.0的矽酸鈉模數可以得到良好的孔隙結構。與使用SDS作為穩定劑的泡沫無機聚合物相比,含過氧化氫的泡沫無機聚合物的孔隙尺寸分佈具有更多小孔,後者通過使用SDS獲得更大的孔隙獲得較緻密的結構。無機聚合物基質中的開孔可以產生更高的孔隙率,更低的密度和強度,以及更低的熱傳導係數因此可以作為隔熱材料。從微觀結構和形態特徵可以用來解釋其大孔結構,支持所得數據並且了解其泡沫無機聚合物之工程性質。

關鍵詞:過氧化氫,十二烷基硫酸鈉,碘化鉀,矽酸鈉模數,泡沫無機聚合物,孔隙率,孔徑分佈,隔熱材料


The effects of hydrogen peroxide as a foaming agent, sodium dodecyl sulfate as foaming stabilizer, potassium iodide as the catalyst of foaming agent and sodium silicate modulus on the engineering properties of foamed geopolymer through chemical foaming method have been investigated. Several tests had been performed to obtain the target properties such as dry density, thermal conductivity, compressive strength, water absorption and sorptivity, porosity, pore size distribution and microstructural analysis through scanning electron microscopy. Pore size distributions were obtained by ImageJ image analyzer. The correlation between the pore characteristics and the engineering properties of foamed geopolymer was also analyzed. Dry density, compressive strength and thermal conductivity of foamed geopolymer were decreased with the increase of hydrogen peroxide and resulted in the fast development of larger pore volume, and consequently higher amounts of the total of porosity and absorption level. Sodium dodecyl sulfate help generates more bubbles with uniform gradation. Potassium iodide can be used to perform as a catalyst which is equivalent to 1.5% of hydrogen peroxide. The resulting data had been confirmed by the observation of macropores in the SEM images. The engineering properties have a good correlation with pore structure parameters of foamed geopolymer. The optimum amount of hydrogen peroxide was 2% and 1.5% while using sodium dodecyl sulfate (SDS) as a stabilizer. The research showed that a good pore structure could be obtained when using sodium silicate modulus of 3.0. The pore size distribution of foamed geopolymer containing hydrogen peroxide has a higher amount of smaller pores than those of foamed geopolymer using SDS as a stabilizer that attained the denser structure by using SDS to obtain larger open pores. The open pores in the geopolymer matrix can produce higher porosity, lower density and strength, also the lower thermal conductivity to be as the insulation materials. The microstructure and morphology characteristics could be explained by the macropores structure and became the supporting data to understand the result of engineering properties of foamed geopolymer.

Keywords: hydrogen peroxide, sodium dodecyl sulfate, potassium iodide, sodium silicate modulus, foamed geopolymer, porosity, pore size distribution, insulation material, engineering properties

摘要 i Abstract iii Acknowledgements v Contents vii List of Tables ix List of Figures xi List of Symbols and Abbreviations xvii Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and scope of the research 4 1.3 Thesis outline 5 Chapter 2 Literature review 7 2.1 Overview of geopolymer concrete 7 2.2 Constituents material of geopolymer concrete 9 2.2.1 Fly ash 10 2.2.2 Ground granulated blast furnace slag (GGBFS) 13 2.2.3 Alkali activator 14 2.3 Foam geopolymer 16 2.4 The environmental perspective of foam geopolymer 20 Chapter 3 Experimental program 29 3.1 Material properties 29 3.2 Mixture proportions, mixing procedures and curing condition 30 3.2.1 Mixture proportions 30 3.2.2 Mixing procedure and curing condition 32 3.3 Testing methods 33 3.3.1 Dry Density 33 3.3.2 Thermal Conductivity 34 3.3.3 Compressive Strength 35 3.3.4 Total Water Absorption 35 3.3.5 Capillary Water Absorption 37 3.3.6 Porosity 37 3.3.7 Scanning Electron Microscopy 38 3.3.8 Pore Size Distribution 38 Chapter 4 Results and discussion 53 4.1 Dry density of foamed geopolymer paste 53 4.2 Thermal conductivity of foamed geopolymer paste 55 4.3 Compressive strength 57 4.4 Air void features of foamed geopolymer paste 58 4.5 Total and Capillary Water Absorption 59 4.5.1 Porosity and Pore Size Distribution 62 4.5.2 Microstructural analysis of macropore of foamed geopolymer paste 64 Chapter 5 Conclusions and suggestions 95 5.1 Conclusions 95 5.2 Suggestions 98 References 99

[1] Assi, L. N., K. Carter, E. Deaver, P. Ziehl. Review of availability of source materials for geopolymer/sustainable concrete Journal of Cleaner Production, 263: p. 1-13. (2020)
[2] Aupoil, J., J.-B. Champenois, J.-B. d. E. d. Lacaillerie, A. Poulesquen. Interplay between silicate and hydroxide ions during geopolymerization. Cement and Concrete Composites, 115: p. 426-432. (2019)
[3] Claisse, P. A., J. G. Cabrera, D. N. Hunt. Measurement of porosity as a predictor of the durability performance of concrete with and without condensed silica fume. Advances in Cement Research, 13: p. 165-174. (2001)
[4] Elahi, M. M. A., M. M. Hossain, M. R. Karim, M. F. M. Zain, C. Shearer. A review on alkali-activated binders: Materials composition and fresh properties of concrete Construction and Building Materials, 260: p. 1-14. (2020)
[5] Giergiczny, Z. Fly ash and slag. Cement and Concrete Research, 124: p. 1-15. (2019)
[6] Hajimohammadi, A., T. Ngo, P. Mendis. Enhancing the strength of pre-made foams for foam concrete applications. Cement and Concrete Composites, 87: p. 164-171. (2018)
[7] Hajimohammadi, A., T. Ngo, P. Mendis, T. Nguyen, A. Kashani, J. S. J. van Deventer. Pore characteristics in one-part mix geopolymers foamed by H 2 O 2 : The impact of mix design. Materials & Design, 130: p. 381-391. (2017)
[8] Hassan, A., M. Arif, M. Shariq. Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223: p. 704-728. (2019)
[9] Hemalatha, T., A. Ramaswamy. A review on fly ash characteristics – Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147: p. 546-559. (2017)
[10] International, A., C642 − 13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, West Conshohocken, PA, (2013).
[11] International, A., C1585 − 13 Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, West Conshohocken, PA, (2013).
[12] International, A., C567/C567M − 14, Standard Test Method for Determining Density of Structural Lightweight Concrete, West Conshohocken, PA, (2014).
[13] International, A., C109/C109M − 16a Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), West Conshohocken, PA, (2016).
[14] International, A., C1723 − 16 Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy, West Conshohocken, PA, (2016).
[15] International, A., C518.8703 Thermal Conductivity, West Conshohocken, PA, (2017).
[16] International, A., C989 Standard Specification for Slag Cement for Use in Concrete and Mortars, West Conshohocken, PA (2018).
[17] International, A., C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, West Conshohocken, PA, (2019).
[18] Ji, Z., M. Li, L. Su, Y. Pei. Porosity, mechanical strength and structure of waste-based geopolymer foams by different stabilizing agents. Construction and Building Materials, 258: p. 1-10. (2020)
[19] Korat, L., V. Ducman. The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams. Cement and Concrete Composites, 80: p. 168-174. (2017)
[20] Liu, M. Y. J., U. J. Alengaram, M. Santhanam, M. Z. Jumaat, K. H. Mo. Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Construction and Building Materials, 120: p. 112-122. (2016)
[21] Mastali, M., P. Kinnunen, H. Isomoisio, M. Karhu, M. Illikainen. Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates. Construction and Building Materials, 187: p. 371-381. (2018)
[22] Miyamoto, T., K. Akahane, K. Torii, S. Hayashiguchi, Production and Use of Blast Furnace Slag Aggregate for Concrete, NIPPON STEEL & SUMITOMO METAL, (2015).
[23] Ouyang, X., Y. Ma, Z. Liu, J. Liang, G. Ye. Effect of the Sodium Silicate Modulus and Slag Content on Fresh and Hardened Properties of Alkali-Activated Fly Ash/Slag. Minerals, 10 (1): p. 1-17. (2019)
[24] Ozbay, E., M. Erdemir, H. I. Durmus. Utilization and efficiency of ground granulated blast furnace slag on concrete properties - A review. Construction and Building Materials, 105: p. 423-434. (2016)
[25] Patankar, S. V., S. S. Jamkar, Y. M. Ghugal. Effect of water to geopolymer binder ratio on the production of fly ash based geopolymer concrete. International Journal of Advanced Technology in Civil Engineering, 2 (1): p. 79-83. (2013)
[26] Raj, A., D. Sathyan, K. M. Mini. Physical and functional characteristics of foam concrete_ A review _ Elsevier Enhanced Reader.pdf. Construction and Building Materials, 221: p. 787-799. (2019)
[27] Ranjani, G. I. S., K. Ramamurthy. Analysis of the Foam Generated Using Surfactant Sodium Lauryl Sulfate. International Journal of Concrete Structures and Materials, 4 (1): p. 55-62. (2010)
[28] Rashad, A. M. An overview on rheology, mechanical properties and durability of high volume slag. Construction and Building Materials, 187: p. 89-117. (2018)
[29] Sani, N. A. M., Z. Man, M. R. Shamsuddin, K. A. Azizli, K. Z. K. Shaari. Determination of Excess Sodium Hydroxide in Geopolymer by Volumetric Analysis Procedia Engineering, 148: p. 298-301. (2016)
[30] Shawnim, P., F. Mohammad. POROSITY, PERMEABILITY AND MICROSTRUCTURE OF FOAMED CONCRETE THROUGH SEM IMAGES. Journal of Civil Engineering, Science and Technology, 11 (1): p. 22-33. (2019)
[31] Singh, B. Foamed geopolymer concrete. Materials Today : Proceeding, 5: p. 15243–15252. (2018)
[32] Singh, B., G. Ishwarya, M. Gupta, S. K. Bhattacharyya. Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85: p. 78-90. (2015)
[33] Siyal, A. A., M. R. Shamsuddin, M. I. Khan, N. E. Rabat, M. Zulfiqar, Z. Man, J. Siame, K. A. Azizli. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes. J Environ Manage, 224: p. 327-339. (2018)
[34] WCED. Our Common Future.Chapter 2: Towards sustainable development .pdf. World Commission on Environment and Development: p. 1-300. (1987)
[35] Xu, F., X. Deng, C. Peng, J. Zhu, J. Chen. Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites. Construction and Building Materials, 150: p. 179-189. (2017)
[36] Xu, F., G. Gu, W. Zhang, H. Wang, X. Huang, J. Zhu. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method Ceramics International, 44: p. 19989-19997. (2018)
[37] Xu, G., X. Shi. Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling, 136: p. 95-109. (2018)
[38] You, J., J. Zhou, Y. Xiao, H. Yang, Y. Yang. Effect of Curing Age on Material Properties of Autoclaved Light-Weight Concrete Wallboard. IOP Conference Series: Earth and Environmental Science, 440: p. 1-9. (2020)
[39] Zhang, P., Z. Gao, J. Wang, J. Guo, S. Hu, Y. Ling. Properties of fresh and hardened fly ash_slag based geopolymer concrete. Journal of Cleaner Production, 270: p. 1-21. (2020)
[40] Zhang, P., Y. Zheng, K. Wang, J. Zhang. A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Engineering, 152: p. 79-95. (2018)
[41] Zhang, Z., J. L. Provis, A. Reid, H. Wang. Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials, 56: p. 113-127. (2014)
[42] Zhang, Z., J. L. Provis, A. Reid, H. Wang. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cement and Concrete Composites, 62: p. 97-105. (2015)

QR CODE