簡易檢索 / 詳目顯示

研究生: 劉映廷
Ying-Ting Liu
論文名稱: 利用標準CMOS製程及微機電製程製作紅外光熱輻射發光元件
Fabrication of Infrared Thermal Emitters with Standard CMOS Process and MEMS Process
指導教授: 李三良
San-Liang Lee
口試委員: 蘇忠傑
Jung-Chieh Su
何文章
Wen-Jeng Ho
洪勇智
Yung-Jr Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 84
中文關鍵詞: 紅外線熱輻射發光元件金屬網格濾波器表面電漿
外文關鍵詞: Infrared, Thermal emitter, Metal-mesh Filter, Surface plasmon
相關次數: 點閱:241下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為應用於紅外光科技技術,本論文欲製作發光波長落在4 ~ 12 μm此波段之紅外光熱輻射發光源元件。為了製作發光元件,以元件結構中之多晶矽層材料作為一電阻發熱層,並分別以晶圓廠代工製作之晶片及一般微機電製程製作之元件進行探討。下線晶片具週期性十字架形金屬孔洞作為濾波結構,微機電製程之元件則有二維週期孔洞之光子晶體結構作為濾波結構,可以針對特定設計波長範圍產生濾波效果。
下線之整體晶片尺寸大小為1.635 × 1.85 mm2,具十四種十字架參數之濾波器,經量測後電阻值皆大約是23 Ω。而微機電製程的部分也製作了發光波長位置在7.2 μm、9.2 μm之發光元件。藉著高摻雜濃度多晶矽層之低電阻率強化發光效率和設計元件長寬比,元件尺寸大小分別為4.45 × 2 mm2、4.45 × 2.4 mm2、4.45 × 2.8 mm2。發光功率經紅外光檢光器量測,下線晶片其發光功率密度皆可達7 mW/cm2以上,微機電製程之元件其發光功率達0.349 mW,發光功率密度最高達3.21 mW/cm2。波長變化情形,我們經由FTIR之量測結果可以發現在不同孔洞週期下,波峰之波長位置無明顯差異,需進一步探討濾波效應。


For the applications in infrared therapy and sensing, this thesis focuses on developing far infrared (FIR) thermal emitter devices, whose wavelength ranges from 4 ~ 12 μm. In order to manufacture thermal emitter, we utilize the polysilicon layer on silicon platform as the heating layer of the device structure. We try two platforms to fabricate FIR devices: standard CMOS foundry process and MEMS process. There are metal cross-shaped mesh filter in the FIR devices fabricated with the CMOS process, while there are two-dimensional photonic crystal structures in the MEMS devices. Devices on both platforms have periodic hole structures, which are designed to provide filtering effect in specific wavelength range. In addition to the narrowing of the emitted FIR spectrum, the periodic structure can have better confinement of the light emission direction.
The chip size of the CMOS integrated FIR emitters is 1.635 × 1.85 mm2 and the measured resistance is about 23 Ω for each device. The emitting power density of CMOS thermal emitters is measured by infrared photodetector and achieves 7 mW/cm2. The MEMS thermal emitters are designed to have peak wavelengths of 7.2 μm and 9.2 μm. The resitivity of the poly-Si layer is reduced with high doping concentration. The device size of the MEMS thermal emitters is 4.45 × 2 mm2, 4.45 × 2.4 mm2, and 4.45×2.8 mm2 respectively. The emitting power of the MEMS FIR light source can exceed 0.349 mW, and the emitting power density can reach 3.21 mW/cm2. According to the measured FIR spectrum, the wavelength filtering effect by using different periodic structures is not obvious by the FTIR measurement; and this requires further investigation.

摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 第一章 研究動機與元件技術介紹 1 1-1 前言 1 1-2 研究動機 1 1-3 紅外光熱輻射發光源之光學濾波 2 1-4 黑體輻射簡介 3 1-5 研究方法 4 1-6 論文架構 5 第二章 材料模擬與元件設計 6 2-1 標準CMOS光電積體電路佈局 6 2-1-1 標準互補式金氧半架構介紹 6 2-1-2 設計流程 8 2-2 表面電漿子原理及探討 8 2-2-1 介電材料與金屬介面之表面電漿模態 9 2-3 模擬軟體簡介 14 2-3-1 週期性孔洞波長模擬 14 2-3-2 十字架形金屬孔洞濾波模擬 17 2-4 傳輸線模型(TLM) 21 2-5 元件尺寸設計 24 2-5-1 標準CMOS製程晶片尺寸設計 24 2-5-2 微機電製程元件尺寸設計 25 第三章 元件製程步驟 27 3-1 光罩設計 28 3-2 製程流程 29 3-3 製程結果與討論 35 3-3-1 定義金屬區與製作光子晶體結構 35 第四章 元件量測 40 4-1 標準CMOS製程晶片量測結果 40 4-1-1 金屬濾波器量測其輸出波長 41 4-1-2 發光功率及電流-電壓量測 47 4-1-3 溫度分布量測 52 4-1 57 4-2 微機電製程元件量測結果 57 4-2-1 不同週期下其輸出波長量測 57 4-2-2 發光功率及電流-電壓量測 61 4-2-3 傳輸線模型量測 66 第五章 結論 67 5-1 成果與討論 67 5-2 未來研究方向 68 參考文獻 70

[1] D. L. Woolard, E. R. Brown, M. Pepper and M. Kemp, “Terahertz frequency sensing and imaging: a time of reckoning future applications?,” Proc. IEEE, vol. 93, no. 10, pp. 1722-1743, Oct. 2005.
[2] H. San, C. Li, X. Chen, R. Chen, and Q. Zhang, “Silicon-based micro-machined infrared emitters with a micro-bridge and a self-heating membrane structure,” IEEE Photon. Technol. Lett., vol. 25, no. 11, pp. 1014-1016, May 2013.
[3] C. Tei, Y. Horikiri, J. Park, J. Jeong, K. Chang, N. Tanaka, and Y. Toyama, "Effects of hot water bath or sauna on patients with congestive heart failure: acute hemodynamic improvement by thermal vasodilation," J. Cardiol., vol. 24, no. 3, pp. 175-183, May 1994.
[4] C.C. Lin, C.F. Chang, M.Y. Lai, T.W. Chen, P.C. Lee, W.C. Yang, “Far-infrared therapy: a novel treat to improve access blood fiow and unassisted patency of arterovenous fistula in hemodialysis patients,” J. Am. Soc. Nephrol., vol. 18, no. 3, pp. 985-982, Mar. 2007.
[5] H.Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima, H. Nakanishi, A.H. Kwon, Y. Azuma, T. Nagaoka, T. Ogawa and Y. Kamiyama, “Promotive effects of far-infrared ray on full-thickness skin wound healing in rats,” Exp. Biol. Med., vol. 228, no. 6, pp. 724-729, Jan. 2003.
[6] 謝鸚爗, 林招膨, 劉威忠, 林群智, “遠紅外線在醫學上之應用及其作用機制,” 台灣應用輻射與同位素雜誌, vol. 3, no. 3, pp.333-340, Sep. 2007 .
[7] M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. da Silva, “Cross-shaped terahertz metal mesh filters: historical review and results,” Adv. Opt. Technol., vol. 2012, pp. 1–12, Jan. 2012.
[8] K. E. Paul, C. Zhu, J. C. Love, and G. M. Whitesides, “Fabrication of mid-infrared frequency-selective surfaces by soft lithography,” Appl. Opt., vol. 40, no. 25, pp. 4557-4561, Sep. 2001.
[9] D. J. Shelton, J. C. Ginn, and G. D. Boreman, “Bandwidth variations in conformal infrared frequency selective surfaces,” IEEE Antennas Propag. International Symposium, pp. 3976-3979, Jun. 2007.
[10] W. Konza, J. Hildenbranda, M. Bauersfelda, S. Hartwiga, A. Lambrechta, V. Lehmannb ,and J. Wöllensteina, “Micromachined IR-source with excellent blackbody like behaviour,” Proc. of SPIE, vol. 5836, pp. 540-548, Jul. 2005.
[11] Y. Udagawa, H. Ishigame, and H. Nagasawa, “Effects of hydroxyapatite in combination with far-infrared rays on spontaneous mammary tumorigenesis in SHN mice,” Am. J. Chin. Med., vol. 30, no. 04, pp. 495-505, Jan. 2002.
[12] W. Becker, R. Fettig, A. Gaymann, and W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B, vol. 194, no. 1, pp. 241-255, Mar. 1996.
[13] S. Dong, N. Li, S. H. Chen, X. H. Liu, and W. Lu, “Impact ionization in quantum well infrared photodetectors with different number of periods,” J. Appl. Phys., vol. 111, no. 3, pp. 034504(1)-034504(6), Feb. 2012.
[14] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag., vol. 4, no. 21, pp. 396-402, Sep. 1902.
[15] U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves),” J. Opt. Soc. Am., vol. 31, no. 3, pp. 213-222, Mar. 1941.
[16] A. Hessel, and A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt., vol. 4, no. 10, pp. 1275-1297, Oct. 1965.
[17] 邱國斌, 蔡定平, “金屬表面電漿簡介,” 物理雙月刊, vol. 28, no. 2, pp. 472-485, Apr. 2006.
[18] 吳民耀, 劉威志, “表面電漿子理論與模擬,” 物理雙月刊, vol. 28, no. 2, pp.486-496, Apr. 2006.
[19] F. Q. Li, H. S. San, C. Z. Li, Y. Li, and X. Y. Chen, “MEMS-based plasmon infrared emitter with hexagonal hole arrays perforated in the Al-SiO2-Si structure,” J. Micromech. Microeng., vol. 21, pp. 105023(1)-(7), Oct. 2011.
[20] I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E. Johnson, “Extraordinary emission from two-dimensional plasmonic-photonic crystals,” J. Appl. Phys., vol. 98, pp. 013531(1)-013531(6), Jul. 2005.
[21] 賴威良, “遠紅外線表面電漿子元件之研究,” 碩士論文, 國立交通大學, 2009.
[22] 郭紀葳, “設計與製作紅外光熱輻射發光元件,” 碩士論文, 國立台灣科技大學, 2015.
[23] 陳彥偉, “P 型氮化鋁鎵之歐姆接觸研究,” 碩士論文, 國立交通大學, 2006.
[24] 呂彥興, “氧化鋅鎵薄膜成長在氮化鎵發光二極體上之應用,” 國立成功大學, 2007.
[25] W. J. Hwang, K. S. Shin, J. H. Roh, D. S. Lee ,and S. H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors,” Sensors, vol. 11, no. 3, pp. 2580-2591, Mar. 2011.
[26] H. Y. Li, S. M. Zhou, J. Li, Y. L. Chen, S. Y. Wang, Z. C. Shen, L. Y. Chen, H. Liu, and X. X. Zhang, “Analysis of the Drude model in metallic films,” Appl. Opt., vol. 40, no. 34, pp. 6307-6311, Dec. 2001.

QR CODE