簡易檢索 / 詳目顯示

研究生: 馬志明
Chih-Ming Ma
論文名稱: 紫外線/光觸媒程序處理氣相揮發性有機物反應行為之研究
Decomposition of Volatile Organic Compounds in Air Streams by UV/Photocatalysts Process
指導教授: 顧洋
Young Ku
口試委員: 鄭福田
Fu-Tien Jeng
蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
張祖恩
Juu-En Chang
李嘉平
Chia-Pyng Lee
劉志成
Jhy-Chern Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 203
中文關鍵詞: 光觸媒揮發性有機物二氧化鈦光反應器光纖
外文關鍵詞: Photocatalyst, Volatile organic compounds (VOCs), TiO2, Photoreactor, Optical fiber
相關次數: 點閱:261下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要目的為氣相污染物在光觸媒反應之效率探討、利用光觸媒反應器開發及光觸媒改質提升反應效率,本研究分別利用連續式微分光纖反應器、陣列式新型光纖反應器及環狀光反應器進行UV/光觸媒程序分解揮發性有機氣相污染物。在連續式微分光纖反應器之反應系統的部分,分別針對氣相污染物苯、三氯乙烯及異丙醇,探討有關UV光強度、反應物濃度、反應物滯留時間、濕度等操作因素對反應物的轉化率及礦化程度之影響情形,實驗結果顯示以UV/TiO2程序在連續式微分光纖反應器中進行氣相揮發性有機物的光催化分解研究時,處理效率則主要受UV光強度、氣相有機物進料濃度、相對濕度大小及反應物滯留時間等因素的影響。

此外,本研究嘗試利用光纖實驗結果所得知之光纖特性,發展出一陣列式新型光纖反應器,並以處理氣相異丙醇為污染物探討陣列式新型光纖反應器之可行性及其光量子產率。實驗結果顯示連續式微分光纖反應器、陣列式新型光纖反應器之量子產率均比環狀反應器高。本研究也利用添加白金、銀來進行光觸媒改質,期以降低光觸媒之電子-電洞結合趨勢,進而促進光觸媒之光利用率,探討改質光觸媒在光觸媒催化程序的影響,依據實驗結果顯示添加白金、銀均能有效提升分解效率,量子產率均比純P-25 TiO2高。

本研究亦針對微分光纖反應器及環狀光反應器,推導建立適用於光反應器之設計方程式,並以實驗結果驗證其可行性,以作為此類光反應器將來在反應器操作與開發時之研究基礎,並評估反應器進行光催化反應之潛力。從結果顯示此方法可有效地模擬異丙醇分解的轉化率,並合理預測光反應器之光量子產率情形。

本研究也利用電腦輔助流體力學(CFD)之計算與模擬,具體描述本研究所使用之環狀光反應器內的流體流動型態及流速分佈,且由模擬結果發現,光反應器內部實際的流動現象並非理想層流,有許多光觸媒並無法有效利用,本研究利用模擬的結果進而提出反應器設計概念上之相關建議。


The main objective of this study is to develop a simple, energy-efficient, photoreactor for operating at room temperature. In this study, the photoreactor type included a differential-type optical fiber reactor, annular photoreactor and new optical fiber reactor. Gaseous 2-propanol (isopropanol, IPA), trichloroethylene (TCE) and benzene were chosen as the target compound in this study because IPA, TCE and benzene were common indoor air pollutants.

A differential-type continuous flow optical fiber photoreactor that used single optical fiber coated with TiO2 photocatalyst as light delivery support of photocatalyst was investigated for treatment of gaseous volatile organic compounds. The decomposition of gaseous volatile organic compounds by UV/TiO2 process in an optical fiber photoreactor was studied under various UV light intensities, humidities, and reaction time of carrier gas (flow rates). Conversions of gaseous volatile organic compounds were increased with increasing light intensity, reaction time. Furthermore, the decomposition of gaseous volatile organic compounds was strongly influenced by humidity in the airflow, and the optimum performance was achieved under relative humidity of 15-25%. Experimental results indicated that TCE had lower adsorption constant but it was the most degraded constituent. This might be that TCE decomposition could lead to formation of free radicals Cl• which accelerated the reaction. The apparent quantum yields for the differential-type optical fiber photoreactor were observed to be higher than those for the annular photoreactor.

In this work, designing and fabrication of a new gas-phase optical fiber photoreactor was introduced and operated under various parameters, such as UV light intensity and initial concentration for the photocatalytic decomposition of acetone. Experimental results indicated that increasing the UV light intensity or decreasing initial concentrations of IPA by UV/TiO2 process would result in improving the decomposition and mineralization efficiencies. The apparent quantum yield of the new optical fiber photoreactor is about 2 times greater than that of the annular reactor.

The purposes of this research include the investigation relating to the modification of photocatalyst. Modification of photocatalyst via doping metal on the TiO2 photocatalyst is assessed for possible application. The removal and mineralization of IPA under radiation of various light intensities were studied. For experiments conducted with gaseous IPA under UV light irradiation, the photocatalytic activity of Pt or Ag deposited TiO2 surface was significantly superior to that of TiO2 only ones. The increase of UV light intensity and retention time improved the decomposition of IPA. However, both the apparent quantum yield for IPA decomposition and CO2 production were decreased. A mathematical model combining the continuity equations and Langmuir-Hinshelwood (L-H) kinetics was established to adequately describe the reaction behavior of IPA decomposition in the annular photoreactor with various photocatalysts and gaseous volatile organic compounds decomposition in the differential-type optical fiber photoreactor. The apparent quantum yielded can be modeled and calculated for the decomposition of IPA by photocatalytic oxidation in the annular photoreactor coated with TiO2 and Pt/TiO2.

Table of Contents Page Chinese Abstract...……………………………………………………………………………...I English Abstract………………………………………...………………...…………………. III Acknowledgment...…………………………………………….……………………………. .V Table of Contents…………………………………………………………..…………………VI List of Figures……………………………………………………………….……………VIII List of Tables………………………………………………………………………….….....XIII List of symbols……………………………………………………………….……………..XIV Chapter 1 Introduction…………………………………………………………………………1 1.1 Background………………………………………………………………….1 1.2 Objectives and scope………………………………………………………..3 2 Literature Review…………………………………………………………………….4 2.1 Photocatalyst and photocatalysis…….……………………………….4 2.1.1 Basic properties of TiO2…………………………………………………..9 2.1.2 Mechanism of photocatalytic oxidation…………………………………11 2.1.3 The applications of photocatalysis………………………….…………….16 2.2 Factors affecting photocatalysis…………………………………….22 2.2.1 Effect of light intensity…………………………………………………..28 2.2.2 Effect of humidity……………..……………………….………………..32 2.2.3 Effect of initial concentration………………………….…………..…35 2.2.4 Effect of oxygen concentration………………………………………...36 2.3 Photoreactor, kinetic and modified TiO2………………………………….39 2.3.1 Photoreactor type……………………………...…………………..39 2.3.2 Modified TiO2………………………………………….…….………….53 2.3.3 Kinetic of photocatalytic oxidation……………………………………….56 3 Experimental………………………………………………………………………..59 3.1 Materials……………………………………………………………………59 3.2 Apparatus and photoreactor…………………………………..…………..63 3.3 Procedures………………………………………………………………….72 3.3.1 Coating of TiO2, Pt/TiO2, Ag/TiO2 and film characterization……….72 3.3.2 Photocatalytic process system………………………………….………..75 3.3.3 Background experiments……………………………………...……...76 4 Results and Discussion…………………………………………………………….84 4.1 Photocatalytic degradation of gaseous organic contaminants in a differential-type optical fiber photoreactor………………………………………………..84 4.1.1 Effect of initial concentration………………………………………...84 4.1.2 Effect of UV light intensity……………………………….……….…..86 4.1.3 Effect of relative humidity…………….……………………………...88 4.1.4 Effect of flow rate………………….….……………………………...90 4.1.5 Kinetic of photocatalytic degradation……………..………………...92 4.1.6 Catalyst activity and optical fiber photoreactor limit…………………...102 4.2 New optical fiber photoreactor and annular photoreactor …………….……104 4.2.1 New optical fiber reactor for photocatalytic degradation gaseous IPA…104 4.2.2 An annular photoreactor for photocatalytic degradation gaseous IPA.…110 4.2.3 Comparisons of photoreactor……………………………………………..123 4.3 Modified TiO2 catalyst………………………...…………………..……….124 4.3.1 Surface characterization of Ag/TiO2………………………………….…124 4.3.2 The comparison Ag/TiO2 and TiO2…………………………………...127 4.3.3 Surface characterization of Pt/TiO2………………………………….…138 4.3.4 The comparison Pt/TiO2 and TiO2…………………………………...142 4.4 Modeling the photocatalytic decomposition of IPA in an annular photoreactor ……………………………….……………………......……152 5 Conclusions and recommendations……………………………………………….….162 Reference……………………………………………………………………………………166 Appendix……………………………….……………………………………………………184 Vita………………………………………….……………………………………………….197

References

Alberic, R. M. and Jardim, W. F., “Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide,” Appl. Catal. B: Envirom., Vol.14, pp.55-68 (1997)
Ameen, M. M. and Raupp, G. B., “Reversible catalyst deactivation in the photocatalytic oxidation of diluteo-xylene in air,” J. Catal., Vol. 184, pp.112-122 (1999)
Anpo, M. and Takeuchi, M., “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” J. Catal., Vol. 216, pp.505-516 (2003)
Ao, C. H. and Lee, S. C., “Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level,” Appl. Catal. B: Environ., Vol. 44, pp.191-205 (2003)
Ao, C. H. and Lee, S. C., “Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level,” J. Photochem. Photobiol. A. Chem., Vol. 161, pp.131-140 (2004)
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, Vol. 293, pp.269-271 (2001)
Bhatkhande, D. S., Pangarkar, V. G. and Beenackers A. A. C. M., “Photocatalytic degradation for environmental applications-a review,” J. Chem. Technol. Biotechnol., Vol. 77, pp. 102-116 (2002)
Blake, N. R., and Griffin, G. L., “Selectivity control during the photo-assisted oxidation of 1-butanol on titanium dioxide,” J. Phys. Chem., Vol. 92, pp.5697-5701 (1988)
Bouzaza, A., Vallet, C. and Laplanche, A., “Photocatalytic degradation of some VOCs in the gas phase using an annular flow reactor: Determination of the contribution of mass transfer and chemical reaction steps in the photodegradation process,” J. Photochem. Photobiol. A. Chem., Vol. 177, 212-217 (2006)
Cao, L. X., Huang, A. M., Spiess, F. J. and Suib, S. L., “Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysts,” J. Catal., Vol. 188, pp. 48-57 (1999)
Cao, L. X., Gao, Z., Suib, S. L., Obee, T. N., Hay, S.O. and Freihaut, J. D., “Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration,” J. Catal., Vol. 196, pp. 253-261 (2000)
Carp, O., Huisman C. L. and Reller, A., “Photoinduced reactivity of titanium dioxide,” Prog. Solid State Chem., Vol. 32, pp. 33–177 (2004)
Chang, C. P., Chen, J. N. and Lu, M. C., “Characteristics of photocatalytic oxidation of gaseous 2-propanol using thin-film TiO2 photocatalyst,” J. Chem. Technol. Biotech., Vol. 79, pp. 1293-1300 (2004)
Chang, C. P., Chen, J. N., Lu, M. C. and Yang, H. Y., “Photocatalytic oxidation of gaseous DMF using thin film TiO2 photocatalyst,” Chemosphere, Vol. 58 , pp. 1071-1078 (2005)
Ching, W. H., Leung, M. and Leung, D. Y. C., “Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO2 thin film for enhancement of indoor air quality,” Sol. Energy, Vol. 77, pp.129-135 (2004)
Choi, W., Ko, J. Y., Park, H. and Chung, J. S., “Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone,” Appl. Catal. B: Environ., Vol. 31, pp.209-220 (2001)
Colmenares, J. C., Aramendia, M. A., Marinas, A., Marinas, J. M. and Urbano, F. J., “Synthesis, characterization and photocatalytic activity of different metal-doped titania systems,” Appl. Catal. A: Gen., Vol. 306, pp.120-127 (2006)
Davydov, L. and Smirniotis, P. G., “Quantification of the primary processes in aqueous heterogeneous photocatalysis using single-stage oxidation reactions,” J. Catal., Vol. 191, pp.105-115 (2000)
d’Hennezel, O. and Ollis, D. F., “Trichloroethylene-promoted photocatalytic oxidation of air contaminants,” J. Catal., Vol.167, pp. 118-126 (1997)
d’Hennezel, O., Pichat, P. and Ollis, D. F., “Benzene and toluene gas-phase photocatalytic degradation over H2O and HCl pretreated TiO2: by-products and mechanisms,” J. Photochem. Photobiol. A. Chem., Vol. 118, pp. 197-204 (1998)
Demeestere, K., Visscher, A. D., Dewulf, J., Leeuwen, M. V. and Langenhove, H. V., “A new kinetic model for titanium dioxide mediated heterogeneous photocatalytic degradation of trichloroethylene in gas-phase,” Appl. Catal. B: Environ., Vol. 54 , pp. 261-274 (2004)
Dibble, L. A. and Raupp, G. B., “Kinetics of gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide,” Catal. Lett., Vol. 4, pp.345-354 (1990)
Dibble, L. A. and Raupp, G. B., “Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated air streams,” Environ. Sci. Technol., Vol. 26, pp.492-500 (1992)
Einaga, H., Futamura, S. and Ibusuku, T., “Complete oxidation of benzene in gas phase by platinized titania photocatalysts,” Environ. Sci. Technol., 35(9), 1880-1884, (2001).
Einaga, H., “Effect of silver deposition on tio for photocatalytic oxidation of benzene in the gas phase,” React. Kinet. Catal. Lett., Vol.88 (2), pp. 357-362. (2006)
Esterkin, C. R., Negro, A. C., Alfano, O. M. and Cassano, A. E., “Air pollution remediation in a fixed bed photocatalytic reactor coated with TiO2,” AIChE J., Vol. 51, pp.2298-2310 (2005).
Fujishima, A., and Honda., K., “Electrochemical photolysis of water at a semiconductor electrode,” Nature, Vol. 238, pp.37-38 (1972)
Fujishima, A., Ohtsuki, J., Yamashita, T. and Hayakawa, S., “Behavior of tumor cells on photoexcited semiconductor surface,” Photomed. Photobiol., Vol. 8, pp. 45-46 (1986)
Fujishima, A., Hashoimoto, K. and Watanabe, T., “TiO2 Photocatalysis fundamentals and application,” BKC, Inc., Tokyo (1999)
Fujishima, A., Rao, T. N. and Tryk, D. A.,“Titanium dioxide photocatalysis,” J. Photochem. Photobiol. C: Photochem. Rev., Vol.1, pp.11-21 (2000)
Fuerte, A., Hernandez-Alonso, M. D., Maira, A. J.,. Martinez-Arias, A., M. Fernandez-Garcia, M., Conesa, J. C., Soria, J. and Munuera, G., “Nanosize Ti–W mixed oxides: Effect of doping level in the photocatalytic degradation of toluene using sunlight-type excitation,” J. Catal., Vol. 212, pp.1-9 (2002)
Fernandes MacHado, N. R. C. and Santana, V. S., “Influence of thermal treatment on the structure and photocatalytic activity of TiO2 (P25),” Catal. Today, 107-108, pp. 595-601 (2005)
Fu, X., Zeltner, W. A. and Anderson, M. A., “The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts,” Appl. Catal. B: Environ., Vol. 6, pp.209-224 (1995)
Feiyan, C., Pehkonen, S. O., Ray, M. B., “Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase,” Water Res. Vol. 36, pp.4203-4214.
Gogate, P. R. and Pandit, A. B., “A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions”, Adv. Environ. Res., Vol. 8, pp. 501-551 (2004)
Grela, M. A., and Colussi, A. J., “Kinetics of stochastic charge transfer and recombination events in semiconductor colloid relevance to photocatalysis efficiency,” J. Phys. Chem., Vol. 100, pp. 18214-18221 (1996)
Hager, S. and Bauer, R., “Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide,” Chemosphere, Vol. 38, pp.1549-1559 (1999)
Hayes, R. E., Kolaczkowski S. T. and Thomas, W. J., “Finite-element model for a catalytic monolith reactor,” Comp. Chem. Engi., Vol. 16, pp. 645–657(1992)
He, C., Xiong, Y., Zhua, X. and Li, X., “A platinised TiO2 film with both photocatalytic and non-photocatalytic activities towards the oxidation of formic acid,” Appl. Catal. A: Gen., Vol. 275, pp.55-60 (2004)
Hegedus, M. and Dombi, A., “Gas-phase heterogeneous photocatalytic oxidation of chlorinated ethenes over titanium dioxide: Perchloroethene,” Appl. Catal. B: Environ., Vol. 53, pp. 141-151 (2004)
Herrmann, J. M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catal. Today, Vol. 53, pp. 115-129(1999)
Herrmann, J. M., “Heterogeneous photocatalysis: state of the art and present applications,” Top Catal. Vol. 34, pp.49-65 (2005)
Hoffman, A. J., Carraway, E. R. and Hoffmann, M. R., “Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids,” Environ. Sci. Technol., Vol. 28, pp. 776-785 (1994)
Hoffmann, M. R., Martin, S. T., Choi, W. Y. and Bahnemann, D.W., “Environmental applications of semiconductor photocatalysis,” Chem. Rev., Vol. 95, pp.69-96 (1995)
Hofstadler, K., Bauer, R., Novalic, S. and Helsfer, G.., “New reactor design for photocatalytic wastewater treatment with TiO2 mobilized on fused-silica glass fibers. photo-mineralization of 4-chlorophenol,” Environ. Sci. Technol., Vol. 28, pp.670-674 (1994)
Hung, C. H. and Marinas, B. J., “Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films,” Environ. Sci. Technol., Vol. 31, pp.562-568 (1997)
Ibrahim, H. D. and Lasa, H., “Kinetic modeling of the photocatalytic degradation of air-borne pollutants”, AIChE J., Vol. 50, pp. 1017-1027 (2004)
Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O. and. Sugihara, S., “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B: Environ., Vol. 42, pp. 403-409 (2003)
Imoberdorf, G. E., Cassano, A. E., Irazoqui, H. A. and Alfano, O. M., “Simulation of a multi-annular photocatalytic reactor for degradation of perchloroethylene in air: Parametric analysis of radiative energy efficiencies,” Chem. Eng. Sci., Vol. 62, pp.1138-1154 (2007)
Irokawa, Y., Morikawa, T., Aoki, K., Kosaka, S., Ohwaki, T. and Taga, Y., “Photodegradation of toluene over TiO2–xNx under visible light irradiation,” Phys. Chem., Vol. 8, pp.1116-1121 (2006)
Jacoby, W. A., Nimlos, M. R., and Blake, D. M., “Products, intermediates, mass blances, and reaction pathway for the oxidation of trichloroethylene in air via heterogeneous photocatalysis,” Environ. Sci. Technol., Vol. 28, pp.1661-1670 (1994)
Jo, W. K. and Park, K. H., “Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application,” Chemosphere, Vol. 57, pp.555-565 (2004)
Jo, W. K., Park, K. H. and Chun, H. D., “Photocatalytic destruction of VOCs for in-vehicle air cleaning,” J. Photochem. Photobiol. A. Chem., Vol. 148, pp.109-119 (2002)
Kako, T., Zou, Z. and Jinhua, Y. E., “Photocatalytic oxidation of 2-propanol in the gas phase over cesium bismuth niobates under visible light irradiation”, Res. Chem. Intermed., Vol.31, pp. 359-364 (2005)
Kato, S., Hirano, Y., Iwata, M., Sano, T., Takeeuchi, K. and Matsuzawa, S., “Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide,” Appl. Catal. B: Environ., Vol. 57, pp.109-115 (2005)
Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. and Fujishima, A., “Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect,” J. Photochem. Photobiol. A. Chem., Vol. 106, pp.51-56 (1997)
Kim, S. B. and Hong, S. C., “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst,” Appl. Catal. B:Environ. Vol. 35, pp.305-315 (2002)
Kim, S. H., Kim, S. B., Kim, G. S., Jang, H. T. and Hong, S. C., “Kinetic study on degradation of gaseous acetone over thin-film TiO2 photocatalyst in a continuous flow system,” React. Kinet. Catal. Lett., Vol. 90, pp. 85-91 (2007)
Kirchnerova, J., Herrera Cohen, M.-L., Guy, C. and Klvana, D., “Photocatalytic oxidation of n-butanol under fluorescent visible light lamp over commercial TiO2 (Hombicat UV100 and Degussa P25),” Appl. Catal. A: Gen., Vol.282, pp. 321-332 (2005)
Kribus, A., Zik, O. and Karni, J., “Optical fiber and solar power generator,” Sol. Energy, Vol. 68, pp.405-416 (2000)
Kozlov, D. V., Vorontsov, A. V., Smirniotis, P. G. and Savinov, E. N., “Gas-phase photocatalytic oxidation of diethyl sulfide over TiO2: Kinetic investigations and catalyst deactivation”, Appl. Cata.l B: Environ., Vol. 42, pp. 77-87 (2003)
Kumazawa, H., Inoue, M. and Kasuya, T., “Photocatalytic degradation of volatile and nonvolatile organic compounds on titanium dioxide particles using fluidized beds,” Ind. Eng. Chem. Res., Vol. 42, pp. 3237-3244 (2003)
Ku, Y., Tseng, K. Y. and Wang, W. Y., “Decomposition of gaseous acetone in an annular photoreactor coated with TiO2 thin film,” Water Air Soil Pollut., Vol. 168, pp. 313-323 (2005)
Larson, S.A., Widegren, J. A. and Falconer, J. L., “Transient studies of 2-propanol photocatalytic oxidation on titania,” J. Catal., Vol. 157, pp.611-625 (1995)
Lewandowski, M. and Ollis, D. F., “Extension of a two-site transient kinetic model of TiO2 deactivation during photocatalytic oxidation of aromatics: concentration variations and catalyst regeneration studies,” Appl. Catal. B:Environ., Vol. 45, pp.223-238 (2003)
Li, X. Z. and Li, F. B., “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment,” Environ. Sci. Technol., Vol. 35, pp. 2381-2387 (2001)
Li, F. B. and Li, X. Z., “The enhancement of photodegradation efficiency using Pt-TiO2 catalyst,” Chemosphere, Vol. 48, pp.1103-1111 (2002)
Li, X. Z., Li, F. B., Fan, C. M. and Sun, Y. P., “Photoelectrocatalytic degradation of humic acid in aqueous solutionusing a Ti/TiO2 mesh photoelectrode,” Water Res., Vol. 36, pp. 2215-2224 (2002)
Lichtin, N. N., Avudaithai, M. and Berman, E., “TiO2-photocatalyzed oxidative degradation of binary mixtures of vaporized organic compounds,” Sol. Energy Vol. 56, pp.377-385 (1996)
Lichtin, N. N. and Sadeghi, M., “Oxidation photocatalytic degradation of benzene vapor over TiO2,” J. Photochem. Photobiol. A: Chem., Vol. 113, pp.81-88(1998)
Lin, H., Cheng, S., Zhang, J., Cao, C. and Jiang, W., “The gas-photocatalytic degradation of trichloroethylene without water,” Chemosphere, Vol. 35, pp.2881-2889
Lim, T. H., and Kim, S. D., “Trichloroethylene degradation by photocatalysis in annular flow and annulus fluidized bed photoreactors,” Chemosphere, Vol. 54, pp.305-312 (2004)
Linsebigler, A., Rusu, C. and Yates, J. T., “Absence of platinum enhancement of a photoreaction on TiO2-CO photooxidation on Pt/TiO2 (110),” JACS., Vol. 118, pp. 5284-5289 (1996)
Lin, C. Y. and Li, C. S., “Inactivation of microorganisms on the photocatalytic surfaces in air,” Aeros. Sci. Technol., Vol. 37, pp.939-946 (2003)
Liu, S. X., Qu, Z. P., Han, X. W. and Sun, C. L., “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today, Vol. 93-95, pp.877-884 (2004)
Lim, T. H. and Kim, S. D., “Trichloroethylene degradation by photocatalysis in annular flow and annulus fluidized bed photoreactors,” Chemosphere, Vol. 54, pp. 305-312 (2004)
Lopez, O., Ortiz, J. E. and Jacoby, W. A., “Microfibrous mesh coated with titanium dioxide: A self-sterilizing, self-cleaning filter”, J. Air Waste Manage. Assoc.Vol.52, pp.1206-1213 (2002)
Luo, Y. and Ollis, D. F., “Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: Kinetic promotion and inhibition, time-dependent catalyst activity,” J. Catal., Vol. 163, pp.1-11 (1996)
Marchisio, D. L., Barresi, A. A., “CFD simulation of mixing and reaction: The relevance of the micro-mixing model,” Chem Eng Sci., Vol.58, pp.3579-3587 (2003)
Marinangeli, R. E. and Ollis, D. F., “Photoassisted heterogeneous catalysis with optical fibers: I. isolated single fiber,” AIChE J., Vol. 23, pp.415-426 (1978)
Marinangeli, R. E. and Ollis, D. F., “Photoassisted heterogeneous catalysis with optical fibers: II. non-isothermal single fiber and fiber bundle,” AIChE. J., Vol. 26, pp.1000-1008 (1980).
Marinangeli, R. E. and Ollis, D. F., “Photoassisted heterogeneous catalysis with optical fibers: III. photoelectrodes,” AIChE. J., Vol. 28, pp.945-955 (1982).
Moon, J., Yun, C. Y., Chung, K. W., Kang, M. S. and Yi, J., “Photocatalytic activation of TiO2 under visible light using Acid Red 44,” Catal. Today, Vol. 89, pp. 77-86 (2003)
Moonsiri, M., Rangsunvigit, P., Chavadej, S. and Gulari, E., “Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products,” Chem. Eng. J. Vol. 97, pp.241-248 (2004)
Mohseni, M. and Taghipour, F., “Experimental and CFD analysis of photocatalytic gas phase vinyl chloride (VC) oxidation,” Chem. Eng. J. Vol. 59, pp.1601-1609 (2004)
Nakajima, H., Mori, T. and Watanabe, M., “Influence of platinum loading on photoluminescence of TiO2 powder,” J. Appl. Phys., Vol. 96, pp. 925-927 (2004)
Nishida, S. Y., Nagano, K. J., Phollips, L. A., and March, S. C., “Photocatalytic degradation of trichloroethylene in the gas phase using titanium dioxide pellets,” J. Photochem. Photobiol. A: Chem., Vol. 70, pp.95-106 (1993)
Nishida, K. and Ohgaki, S., “TiO2 photocatalysis for indoor air applications. Effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,” Water Sci. Technol., Vol. 29, pp. 1223-1231 (1995)
Nimlos, M. R., Wolfrum, E. J., Fennell, J. A. and Bintner, G.., “Gas-phase heterogeneous photocatalytic oxidation of ethanol:Pathways and kinetic modeling,” Environ. Sci. Technol., Vol. 30, pp. 3102-3110 (1996)
Noguchi, T., Fujishima, A., Sawunytama, P. and Hashimoto, K., “Photocatalytic degradation of gaseous formaldehyde using TiO2 film,” Environ. Sci. Technol., Vol.32, pp. 3831-3833 (1998)
Obee, T. N., “Photooxidation of sub-parts-million toluene and formaldehyde levels on titania using a glass-plate reactor,” Environ. Sci. Technol., Vol. 30, pp. 3578-3584 (1996)
Obee, T. N. and Hay, S. O., “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environ. Sci. Technol., Vol. 31, pp.2034-2038 (1997)
Obee T. N. and Brown, R. T., “TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene and 1,3-butadiene,” Environ. Sci. Technol., Vol. 29, pp. 1223-1231 (1995)
Ollis, D. F. and Peral, J., “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation,” J. Catal., Vol. 136, pp.554-565 (1992)
Ou, H. H. and Lo, S. L., “Photocatalysis of gaseous trichloroethylene (TCE) over TiO2: The effect of oxygen and relative humidity on the generation of dichloroacetyl chloride (DCAC) and phosgene,” J. Hazard. Mater., Vol.146, pp. 302-308 (2007)
Peill, N. J. and Hoffmann, M. R., “Development and optimization of a TiO2-coated fiber-optic cable reactor: Photocatalytic degradation of 4-chlorophenol,” Environ. Sci. Technol., Vol. 29, pp. 2974-2981 (1995)
Peill, N. J. and Hoffmann, M. R., “Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis,” Environ. Sci. Technol., Vol. 32, pp.398-404 (1998)
Peral, J. and Ollis, D. F., “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde and mxylene oxidation,” J. Catal., Vol. 136, pp.554-565 (1992)
Peral, J., Dimenech, X. and Ollis, D. F., “Heterogeneous photocatalysis for purification, decontamination and deodorization of air,” J. Chem. Technol. Biotechnol. Vol. 79, pp.117-140 (1997)
Petit, N., Bouzaza, A., Wolbert, D., Petit, P. and Dussaud, J., “Photocatalytic degradation of gaseous perchloroethylene in continuous flow reactors: Rate enhancement by chlorine radicals,” Catal. Today, Vol. 124, pp.266-272 (2007)
Pirkanniemi, K. and Sillanpaa, M., “Heterogeneous water phase catalysis as an environmental application: A review,” Chemosphere, Vol.48, pp.1047-1060 (2002)
Rahman, M. M., Krishna, K. M., Soga, T., Jimbo, T. and Umeno, M., “Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films,” J. Phys. Chem., Vol.60, pp. 201-210 (1999)
Rengaraj, S., and Li, X. Z., “Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension,” J. Mol. Catal. A: Chem., Vol. 243, pp.60-67 (2006)
Sakai, H., Baba, R., Hashimoto, K., Fujishima, A. and Heller, A., “Local detection of photoelectrochemically produced H2O2 with a wired horseradish peroxidase microsensor,” J. Phys. Chem., Vol. 99, pp11896-11900 (1995)
Sano, T., Negishi, N., Takeuchi, K. and Matsuzawa, S., “Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator,” Sol. Energy Vol. 77, pp.543-552 (2004)
Senthilkumaar, S., Porkodi, K., Gomathi, R., Maheswari, A. G. and Manonmani, N., “Sol-gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution,” Dyes. Pigm., Vol. 69, pp. 22-32 (2006)
Sakthivel, S., Shankarb, M. V., Palanichamyb, M., Arabindoob, B., Bahnemanna, D. M. and Murugesanb, V., “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst,” Water Res., Vol. 38, pp. 3001-3008 (2004)
Sauer, M. L. and Ollis, D. F., “Acetone oxidation in a photocatalytic monolith reactor,” J. Catal., Vol. 149, pp.81-91 (1994)
Serpone, N., “Relative photonic efficiencies and quantum yield in heterogeneous photocatalysis,” J. Photochem. Photobiol. A: Chem., Vol. 104, pp.1-12 (1997)
Shang, J., Du, Y. and Xu, Z., “Photocatalytic oxidation of heptane in the gas-phase over TiO2”, Chemosphere, Vol.46, pp. 93-99 (2002)
Shiraishi, F., Nomura, T., Yamaguchi, S. and Ohbuchi, Y., “Rapid removal of trace HCHO from indoor air by an air purifier consisting of a continuous concentrator and photocatalytic reactor and its computer simulation,” Chem. Eng. J., Vol. 127, pp.157-165 (2007)
Shiraishi, F., Ohkubo, D., Toyoda, K. and Yamaguchi, S., “Decomposition of gaseous formaldehyde in a photocatalytic reactor with a parallel array of light sources: 1. Fundamental experiment for reactor design”, Chem. Eng. J., Vol.114, pp. 153-159 (2005)
Sun, C. C. and Chou, T. C., “Electrochemically promoted photocatalytic oxidation of nitrite ion by using rutile form of TiO2/Ti electrode,” J. Mol. Catal. A: Chem., Vol. 151, pp. 133-145 (2000)
Sun, B., Vorontsov, A. V. and Smirniotis, P. G., “Role of platinum deposited on TiO2 in phenol photocatalytic oxidation,” Langmuir, Vol. 19, pp. 3151-3156 (2003)
Tsuru, T., Kan-no, T., Yoshioka, T. and Asaeda, M., “A photocatalytic membrane reactor for VOC decomposition using Pt-modified titanium oxide porous membranes.” J. Membr. Sci., Vol. 280, pp.156-162 (2006)
Turchi, C. S. and Ollis, D. F., “Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack,” J. Catal., Vol. 122, pp.178-192 (1990)
Vamathevan, V., Amal, R., Beydoun D., Low, G. and McEvoy, S., “Silver metallisation of titania particles: effects on photoactivity for the oxidation of organics,” Chem. Eng. J., Vol. 198, pp. 127-139 (2004)
Vohra, A., Photocatalytic disinfection of indoor air: Effect of relative humidity and surface roughness of photocatalytic reactor, Ph.D. Thesis, University of Florida, 2005
Vohra, M.S., Lee, J., Choi, W., “Enhanced photocatalytic degradation of tetramethylammonium on silica-loaded titania”, J. Appl. Electrochem., Vol.35, pp. 757-763 (2005)
Vorontsov, A. V., Savinov, E. N. and Smirniotis, P. G., “Vibrofluidized and fixed-bed photocatalytic reactors:case of gaseous acetone photooxidation,” Chem. Eng. Sci. Vol. 55, pp.5089-5098 (2000)
Vorontsov, A. V., Savinov, E. N., Lion, C. and Smirniotis, P. G., “TiO2 reactivation in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor,” Appl. Catal. B: Environ., Vol. 44, pp.25-40 (2003)
Wang, C. Y., Rabani, J., Bahnemann, D. W. and Dohrmann, J. K., “Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts,” J. Photochem. Photobiol. A: Chem., Vol. 148, pp. 169-176 (2002)
Wang, W., Novel optical fiber photoreactor for the decomposition of gaseous benzene in air stream by UV/TiO2, Ph.D. Thesis, National Taiwan University of Science and Technology, 2003
Wang, K. H., Tsai, H. H. and Hsieh, Y. H., “Study of photocatalytic degradation of trichloroethylene in vapor phase on TiO2 photocatalys,” Chemosphere, Vol. 36, pp. 2763-2773 (1998)
Wang, K.H., and Hsieh., Y. H., “Heterogeneous photocatalytic degradation of trichloroethylene in vapor phase by titanium dioxide,” Environ. Inter., Vol. 24, pp.267-274 (1998)
Wang, K. H., Hsieh, Y. H., Chao, P. W. and Cgang, C. Y., “The photocatalytic degradation of trichloroethane by chemical vapor deposition method prepared titanium dioxide catalyst,” J. Hazard. Mater., Vol. 95, pp.161-174 (2002)
Wang, W. and Ku, Y., “The light transmission and distribution in an optical fiber coated with TiO2 particles,” Chemosphere, Vol. 50, pp. 999-1006 (2003)
Wang, W., Chiang, L. W. and Ku, Y., “Decomposition of benzene in air streams by UV/TiO2 process,” J. Hazard. Mater., Vol 101, pp.133-146 (2003)
Warren, B. E., “X-ray Diffraction,” Dover Publications Inc., New York, US (1990)
Wolfrum, E. J., Huang, J., Blake, D. M., Maness, P. C., Huang, Z., Fiest, J. and Jacoby, W. A., “Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces,” Environ. Sci. Technol., Vol. 36, pp. 3412-3419 (2002)
Wu, C. G., Chao, C. C. and Kuo, F. T., “Enhancement of the photo catalytic performance of TiO2 catalysts via transition metal modification,” Cata. Today, Vol. 97, pp. 103-112 (2004)
Yang, L. and Liu, Z., “Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy,” Energy Conv. Manag., Vol. 48, pp. 882-889. (2007)
Yamazaki, S., “Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst,” J. Photochem. Photobio. A: Chem. Vol. 121, pp. 55-61 (1999)
Yu, H., Zhang, K. and Rossi, C., “Theoretical study on photocatalytic oxidation of VOCs using nano-TiO2 photocatalyst,” J. Photochemi. Photobio. A: Chem., Vol. 188, pp. 65-73. (2007)
Zalas, M. and Laniecki, M., ”Photocatalytic hydrogen generation over lanthanides-doped titania”, Sol. Energy Mater. Sol. Cells, Vol.89, pp. 287-296 (2005)
Zhang, L., Sawell, S., Moralejo, C. and Anderson, W. A., “Heterogeneous photocatalytic decomposition of gas-phase chlorobenzene,” Appl. Catal. B: Enviro., Vol 71, pp. 135-142 ( 2007)
Zhang, M., An, T., Fu, J., Sheng, G., Wang, X., Hu, X. and Ding, X., “Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor,” Chemosphere, Vol. 64, pp. 423-431 (2006)
Zhang, P., and Liu, J., “Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study,” J. Photochem. Photobiol. A: Chem., Vol. 167, pp.87-94 (2004)
Zhao J. and Yang, X., “Photocatalytic oxidation for indoor air purification: a literature review,” Build. Environ.,Vol. 38, pp.645-654 (2003)

QR CODE