簡易檢索 / 詳目顯示

研究生: 吳承璋
Cheng-Zhang, Wu
論文名稱: 合成具1,4-二(2,2'-二噻吩)萘骨架之線性共軛分子
Synthesis and Photophysics of Conjugated Molecules with 1,4-di([2,2'-bithiophen]-5-yl)naphthalene Skeleton
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 鄭智嘉
Chih-Chia, Cheng
許智偉
Chih-Wei, Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 大斯托克斯位移溶解度共軛分子鈴木偶合反應光物理
外文關鍵詞: large stokes shift, solubility, conjugated molecules, Suzuki coupling, photophysic
相關次數: 點閱:250下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗室先期研究開發出一系列新的線型共軛分子1,4-二噻吩萘,其吸收光譜及螢光光譜範圍分別為340~393 nm及471~553 nm,且具有極大的斯托克斯位移(122~174 nm)。因此本研究結合先期研究系列化合物的特徵,重新設計並合成一系列具1,4-二(2,2’-聯噻吩-5-基)萘的新型非極性大斯托克斯位移分子,且以”正己烷基”提升分子的溶解度,以利於合成較大結構分子。這些分子產生大斯托克斯位移的原由,是來自於分子基態及激發態產生的幾何構形差異,而非電荷分布變化的分子內電荷轉移效應,因此光譜能不受溶劑效應影響及在高極性溶劑仍維持良好螢光的特性,同時設計更多共軛性使這系列分子具備更長波長的吸收與放光。
本研究以1,4-二(2,2’-聯噻吩-5-基)萘為中心骨架,合成四個目標化合物,並使用儀器測量分子的吸收光譜、螢光光譜、螢光量子產率及消光係數等光物理性質,探討大斯托克斯位移與共軛分子結構之間的關係。


Our laboratory had developed a series of new linear conjugated molecules, 1,4-diarylnaphthalene, with 340~393 nm wavelength of absorption spectra, and 471~553 nm wavelength of fluorescence spectra. These molecules have 122~174 nm Stokes shift. Based on our previous study, this study have synthesized a series of non-polar large Stokes shift molecules with 1,4-bis(2,2'-bithiophen-5-yl) naphthalene skeleton and introduce n-hexyl group to improve the solubility of molecules. We have synthesized more higher molecules weight due to the solubility of compounds. These molecules produce large Stokes shifts is not intra-molecular charge transfer but geometry relaxation. Therefore, the spectra is not affected by the solvent effect and keeping good fluorescence in high polar solvent. Simultaneously, designing more conjugation makes the series of molecules have longer wavelength absorption and emission.
In this study, we use 1,4-bis(2,2'-bithiophen-5-yl)naphthalene as the central skeleton to synthesize four target compounds and use instruments to measure their absorption spectrum, fluorescence spectrum, fluorescence quantum yield and extinction coefficient. Furthermore, using theoretical calculation software to calculate Highest Occupied Molecular Orbital(HOMO)/Lowest Unoccupied Molecular Orbital (LUMO). Obtain foregoing data to realize and discuss the relationship between Large Stokes Shift and conjugated molecular structure.

摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 VII 流程圖目錄 IX 附錄目錄 X 第一章 緒論 1 1-1 前言 1 1-2 有機發光二極體(OLED)簡介 2 1-3 Jablonski能階圖 3 1-4 斯托克斯位移(Stokes shift) 5 1-5 螢光量子產率(Fluorescence quantum yield) 7 1-6 文獻回顧 8 1-6-1 與「萘-1,4-二(2,2’-聯芳基-5-基)分子單元」結構相關之文獻 8 1-6-2 與「引入長烷鏈以增加溶解度」結構相關之文獻 9 1-6-3 與「FRET相關之 Large Stokes shift」文獻 10 1-6-4 與「ICT 相關之 Large Stokes shift」文獻 11 1-6-5 與「分子構形相關之 Large Stokes shift」文獻 13 1-7 研究動機與討論 15 第二章 實驗部分 16 2-1 實驗儀器 16 2-2 實驗原理 17 2-3 儀器原理 18 2-4 儀器量測方法 20 2-4-1 吸收光譜之量測方法 20 2-4-2 螢光光譜之量測方法 21 2-4-3 消光係數之量測方法 22 2-4-4 螢光量子產率之量測方法 23 2-5 藥品及溶劑 25 2-5-1 實驗所使用之藥品 25 2-5-2 實驗所使用之溶劑 26 2-6 化合物結構、分子式及分子量 27 2-7 實驗流程簡圖 29 2-8 化合物合成步驟 30 第三章 結果與討論 38 3-1 化合物於溶液中之光物理研究 38 3-1-1 中性分子光物理性質 38 3-1-2 各化合物於 Dichloromethane光物理性質比較 49 3-2 各化合物的消光係數 56 3-3 螢光量子產率 61 第四章 結論 62 4-1 結論 62 4-2 未來展望 63 第五章 參考文獻 64 附錄 67

1. 王永立. 具 1,4 二噻吩萘骨架之共軛分子合成及光物理性質研究. 國立臺灣科技大學, 臺北市, 2017.
2. Bernard, G*., Philippe le, R., Christophe, P. Organic light-emitting diode (OLED) technology: material, devices and display technologies. Polym Int. 55, 572-582 (2006).
3. H. H. Jaffe & Albert L. Miller. The fates of electronic excitation energy. J. Chem. Educ. 43 (9) (1966).
4. Shokoufeh B., Morteza, K, A*., Sohrab A, K., Hussain H. Al_Kayiem and Aamir, H, B. Application of Quantum Dot nanocrystal in Luminescent solar concentrators. Materials Science and Engineering 328 (2018).
5. Alicia M. Fraind† and John D. Tovar*, ‡. Comparative Survey of Conducting Polymers Containing Benzene, Naphthalene, and Anthracene Cores: Interplay of Localized Aromaticity and Polymer Electronic Structures. J. Phys. Chem. 114 (2010).
6. Fan, B., Ying, L*., Wang, Z., He, B., Jiang, X, F., Huang F*., Cao, Y. Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%. Energy & Environmental Science 10 (5), 1243-1251 (2017).
7. Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H*., Ma, W*. Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy 1 (2) (2016).
8. Chen, Y., Zhang, S., Wu, Y. & Hou, J. Molecular design and morphology control towards efficient polymer solar cells processed using non-aromatic and non-chlorinated solvents. Adv Mater 26 (17), 2744-2749, 2618 (2014).
9. Meng, B., Fu, Y., Xie, Z., Liu, J. & Wang, L. Phosphonated conjugated polymers for polymer solar cells with a non-halogenated solvent process. Polymer Chemistry 6 (5), 805-812 (2015).
10. Jung, E. H., Ahn, H., Jo, W. H., Jo, J. W. & Jung, J. W. Isoindigo-based conjugated polymer for high-performance organic solar cell with a high VOC of 1.06 V as processed from non-halogenated solvent. Dyes and Pigments 161, 113-118 (2019).
11. A. Renzoni, F. Z., and E. Franchi. Mercury Levels along the Food Chain and Risk for Exposed Populations. Environ Res. 77(3), 68-72 (1998).
12. Hugh H. Harris, I. J. P., † Graham N. George†‡. The Chemical Form of Mercury in Fish. Science 301 (2003).
13. Anuwut, P., Waraporn, P., Jitnapa, S., Vinich, P., Thanasat, S., Nantanit, W.*. Colorimetric and fluorescent sensing of a new FRET system via [5]helicene and rhodamine 6G for Hg2+ detection. New J. Chem. 42, 1396 (2018)
14. M. Fischer, J. G. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem. Phys. Lett. 260 (1996).
15. Xu, J., Niu, G., Wei, X., Lan, M., Zeng, L*.,Kinsella, Joseph M., Sheng, R**. A family of multi-color anthracene carboxyimides: Synthesis, spectroscopic properties, solvatochromic fluorescence and bio-imaging application. Dyes and Pigments 139, 166-173 (2017).
16. So, F. et al. Novel host materials for blue phosphorescent OLEDs. Organic Light Emitting Materials and Devices XVII (2013).
17. Chen, Y., Zhao, J., Guo, H. & Xie, L. Geometry relaxation-induced large Stokes shift in red-emitting borondipyrromethenes (BODIPY) and applications in fluorescent thiol probes. J Org Chem 77 (5), 2192-2206 (2012).
18. Norio Miyaura & Akira Suzuki. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev 95, 2457-2483(1995).
19. Namboodiri, V. V. & Varma, R. S. Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Green Chemistry 3 (3), 146-148 (2001).
20. D. Hnyk, M.L. McKee. Challenges and Advances in Computational Chemistry and Physics 20. Boron, 201(2015).

QR CODE