簡易檢索 / 詳目顯示

研究生: 羅瑜緯
Yu-Wei Lo
論文名稱: 第二代磺醯脲類藥物在超臨界二氧化碳中溶解度量測
Solubility of Second Generation Sulfonylureas in Supercritical Carbon Dioxide
指導教授: 李明哲
Ming-Jer Lee
口試委員: 蘇至善
Chie-Shaan Su
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 86
中文關鍵詞: 超臨界二氧化碳第二代磺醯脲類藥物溶解度
外文關鍵詞: Second Generation Sulfonylureas
相關次數: 點閱:259下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目標是使用一套半流動式裝置,分別量測兩種第二代磺醯脲類藥物(格列喹酮及格列齊特)在超臨界二氧化碳中的平衡溶解度,溫度範圍為313.2 K~353.2 K,壓力在15 MPa~31 MPa之間。為了確保平衡釜出口之物流已達平衡,各藥品所需的最少接觸時間分別為格列喹酮 1700 (s),格列齊特 1300 (s)。在實驗條件範圍內格列喹酮平衡溶解度介於0.049 x 10-5 ~ 1.88 x 10-5,格列齊特平衡溶解度介於0.55 x 10-5 ~ 4.7 x 10-5。實驗所得的溶解度數據以兩種與密度相關之半經驗式(Chrastil模式及Mendez-Santiago-Teja模式)關聯。此兩種模式之計算誤差與實驗不確定度相近。本研究也採用Peng-Robinson狀態方程式結合雙變數vdW混合律進行溶解度數據迴歸,關聯結果合理,惟在低壓區的誤差較大些。


    The objective of the present study is to measure the equilibrium solubilities of 2nd generation sulfonylureas(gliquidone and gliclazide)in supercritical CO2 with a semi-flow type equilibrium apparatus at temperatures ranging from 313.2 K to 353.2 K and pressure from 15 MPa to 31 MPa. To ensure the output stream of equilibrium cell being saturated, the minimum contact time are 1700(s)and 1300(s)for gliquidone and gliclazide, respectively. Over the experimental conditions, solubilities are ranging from 0.049 x 10-5 ~ 1.88 x 10-5 for gliquidone, 0.55 x 10-5 ~ 4.7 x 10-5 for gliclazide. The solubility data are correlated with two semi-empirical density-based model, including the Chrastil model and the Mendez-Santiago-Teja model. The deviations are within the experimental uncertainty. The Peng-Robinson equation of state with two parameters van der Waals mixing rules was adopted to correlate solubility data. In general, the correlation results are well, expect for low pressure region.

    目錄 摘要 Abstract I 目錄 II 表目錄 IV 圖目錄 V 第一章 緒論 1 1-1 前言 1 1-2 超臨界流體性質及應用 3 1-3 超臨界流體萃取 6 1-4 研究目的 8 1-5 文獻回顧 8 1-6 本文重點 11 第二章 第二代磺醯脲類藥物在超臨界二氧化碳中溶解度量測裝置與測試 19 2-1 磺醯脲類藥物 19 2-2 實驗方法 21 2-2-1 藥品 21 2-2-2 實驗裝置 22 2-3 實驗操作程序 24 2-3-1 超臨界流體萃取裝置操作與程序 24 2-3-2 藥品組成分析 27 2-4 數據計算 28 2-4-1 樣品中藥物含量 28 2-4-2 超臨界二氧化碳總莫耳數 29 2-5 接觸時間對萃取溶解度的影響 30 第三章 磺醯脲類藥物溶解度量測與數據關聯 46 3-1 實驗量測條件 46 3-2 實驗結果討論 47 3-3 平衡溶解度數據關聯 48 3-3-1 半經驗式關聯 49 3-3-2 狀態方程式關聯 51 第四章 結論與建議 68 4-1 結論 68 4-2 建議 69 參考文獻 71 符號說明 84

    Alberti, K. G. M. and P. Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation, Diabetic Med., 15, 539-553 (1998).

    Alessi, P., A. Cortesi, I. Kikic, N. R. Foster, S. J. Macnaughton, I. Colombo, Particle production of steroid drugs using supercritical fluid processing, Industrial & Engineering Chemistry Research, 35, 4718-4726 (1996)

    Amoroso, S., H. Schmid-Antomarchi, M. Fosset, M. Lazdunski, Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels, Science, 247, 852-854 (1990).

    Asghari-Khiavi, M., Y. Yammi, Solubility of the drug Bisacodyl, methimazole, methylparaben and iodoquinol in supercritical carbon dioxide, J. Chemical & Engineering Data, 48, 61-65 (2003).

    Asghari-Khiavi, M., Y. Yammo, F. A. Farajzadeh, Solubilities of two steroid drugs and their mixture in supercritical carbon dioxide, J. Supercritical Fluids, 30, 111-117 (2004).

    Ashour, I., R. Almehaideb, S. E. Fateen, G. Aly, Representation of solid-supercritical fluid phase equilibria using cubic equations of state, Fluid Phase Equilibria, 167, 41-61 (2000).

    Bolten, D. and M. Türk, Micronisation of carbamazepine through rapid expansion of supercritical solution (RESS), J. Supercritical. Fluids, 62, 32-40 (2012).

    Brennecke, J. F. and C. A. Eckert, Phase equilibria for supercritical fluid process design, AlChE J., 35, 1409-1427 (1989).

    Burgos-Solorzano, G. I., J. F. Brennecke, M. A. Stadtherr, Solubility measurements and modeling of molecules of biological and pharmeceutical onterest with supercritical CO2, Fluid Phase Equilibria, 220, 25-39 (2004).

    Brunner, G., Supercritical fluids : technology and application to food processing, Journal of Food Engineering, 67, 21–33 (2005).

    Chang, S. C., M. J. Lee and H. M. Lin, Nanoparticles formation for metallocene catalyzed cyclic olefin copolymer via a continuous supercritical anti-solvent process, J. of Supercrit. Fluids, 40, 420-432 (2007).

    Chrastil, J., Solubility of solids and liquids in supercritical gases, J. Phys. Chem., 86, 3016-3021 (1982).

    Coutsiko, P., K. Magoulas, D. Tassios, Solubility of p-quidone and 9,10-anthraquinone in supercrtical carbon dioxide, J. Chemical & Engineering Data, 42, 463-466 (1997).

    Deruiter, J., Overview of the antidiabetic agents, Endocrine Pharmacotherapy Module, Spring (2003).

    De Zordi, N., I. Kikic, M. Moneghini, D. Solinas, Solubility of pharmaceutical compounds in supercritical carbon dioxide, J. Supercrit. Fluids, 66, 16-22 (2012).

    Duarte, A. R., P. Coimbra, H. C. de Sousa, C. M. M. Duarte, Solubility of flurbiprofen in supercritical carbon dioxide, J Chemical & Engineering Data, 49, 449-452 (2004).

    Fages, J., H. Lochard, J. J. Letourneau, M. Sauceau, E. Rodier, Particle generation for pharmaceutical applications using supercritical fluid technology, Powder Technol., 141, 219-226 (2004).

    Foster, N. R., G. S. Gurdial, J. S. L. Yun, K. K. Liong, K. D. Tilly, S. S. T. Ting, H. Singh, J. H. Lee, Significance of the crossover pressure in solid-supercritical fluid phase equilibria, Ind. Eng. Chem. Res., 30, 1955-1964 (1991).

    Garmroodi, A., J. Hassan, Y. Yammi, Solubilities of the drug benozaine, metronidazole benzoate, and naproxen in supercritical carbon dioxide, J Chemical & Engineering Data, 49, 709-712 (2004).

    Gordillo, M. D., M. A. Blanco, A. Molero, E. Martinez de la Ossa, Solubility of the antibiotic penicillin G in supercrtical carbon dioxide, J. of Supercritical Fluids , 15, 183-190 (1999).

    Hampson, J. W., R. J. Maxwell, S. Li, R. J. Shadwell, Solubility of three veterinary sulfonamides in supercritical carbon dioxide by a recirculting equilibrium method, J Chemical & Engineering Data, 44, 1222-12225 (1999).

    Hezave, A. Z., S. Aftab and F. Esmaeilzadeh, Solubility of sulindac in the supercritical carbon dioxide: Experimental and modeling approach, J. of Supercrit. Fluids, 68, 39-44 (2012).

    Hezave, A. Z. H. Rajaei, M. Lashkarbolooki, F. Esmaeilzadeh, Analyzing the solubility of fluoxetine hydrichloride in supercrtical carbon dioxide, J. of Supercritical Fluids, 73, 57–62 (2013).

    Hojjati, M., Y. Yamini, M. Khajeh, A. Vatanara, Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations, J. of Supercritical Fluids, 41, 187–194 (2007).

    Hojjati, M., A. Vatanara, Y. Yamini, M. Moradi, A. R. Najafabadi, Supercritical CO2 and highly selective aromatase inhibitor : experimental solubilities and empirical data correlatin, J. of Supercritical Fluids, 50, 203-209 (2009).

    Hörter, D., J. B. Dressman, Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract, Adv Drug Deliv Rev., 46, 75-87 (2001).

    Hosseini, M. H., N. Alizadeh and A. R. Khanchi, Solubility analysis of clozapine and lamotrigine in supercritical carbon dioxide using static system, J. Supercrit. Fluids, 52, 30-35 (2010).

    Huang, Z., S. Kawi, Y. C. Chiew, Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents, J. Supercrit. Fluids, 30, 25-39 (2004).

    Huang, Z., W. D. Lu, S. Kawi, Y. C. Chiew, Solubility of aspirin in supercritical carbon dioxide with and without acetone, J. Chemical & Engineering Data, 49, 1323-1327 (2004).

    Inzucchi, S. E., Oral antihyperglycemic therapy for type 2 diabetes: Scientific review, J. Am. Med. Assoc., 287, 360-372 (2002).

    Johannsen, M., G. Brunner, Solubilities of the xanthines caffeine, theophylline and theobromine in supercritical carbon dioxide, Fluid Phase Equilibria, 95, 215-216 (1994).

    Johnston, K. P., C. A. Eckert, An analytical Carnahan-Starling-van der Waals model for solubility of hydrocarbon solids in supercritical fluids, AlChE J., 27, 773-779 (1981).

    Kawabata, Y., K. Wada, M. Nakatani, S. Yamada, S. Onoue, Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications, Int. J. Pharm., 420, 1-10 (2011).

    Kim, K. H., J. Hong, Equilibrium solubilities of spearmint oil components in supercritical carbon dioxide, Fluid Phase Equilib., 164, 107-115 (1999).

    Kim, Y. M., Y. K. Jeong, M. H. Wang, W. Y. Lee, H. I. Rhee, Inhibitory effect of pine extract on α–glucosidaseactivity and postprandial hyperglycemia, Nutrition, 21, 756–761 (2005).

    Kimura, K., F. Hirayama, K. Uekama, Characterization of tolbutamide polymorphs (burger's forms II and IV) and polymorphic transition behavior, J. Pharm. Sci., 88, 385-391 (1999).

    Kiran, E., Foaming strategies for bioabsorbable polymers in supercritical fluid mixtures. Part II. Foaming of poly(-caprolactone-co-lactide) in carbon dioxide and carbon dioxide+acetone fluid mixtures and formation of tubular foams via solution extrusion, J. of Supercrit. Fluids, 54, 308-319 (2010).

    Knez, Z., M. Skerget, P. Sencar-Bozic, A. Rizner, Solubility of nifedipine and nitrendipine in supercritical CO2, J Chemical & Engineering Data, 40, 216-220 (1995).

    Krentz, A. J., Sulfonylureas in the prevention of vascular complications: from UKPDS to the advance study, International Congress Series, 1253, 261 – 277 (2003).

    Kumar, S. K., K. P. Johnston, Modelling the solubility of solids in supercritical fluids with density as the independent variable, J. of Supercrit. Fluids, 1, 15-22 (1988).

    Kwak, T. Y., G. A. Mansoori, Van der waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling, Chem. Eng. Sci., 41, 1303-1309 (1986).

    Lapane, K. L., B. M. Jesdale, C. E. Dube´, C. B. Pimentel, S. N. Rajpathak, Sulfonylureas and risk of falls and fractures among nursing home residents with type 2 Diabete Mellitus, Diabetes Research and Clinical Practice, 109, 411-419 (2015).

    Lashkarbolooki, M., A. Z. Hezave, Y. Rahnama, R. Ozlati, H. Rajaei, F. Esmaeilzad, Solubility of cyproheptadine in supercritical carbon dioxide ; experimental and modeling approaches, J. of Supercritical Fluids, 84, 13–19 (2013).

    Li H., D. Jia, Q. Zhu, B. Shen, Determination, Correlation and prediction of the solubilities of nuflimic acid, clofenamic acid and tolfenamic acid in supercritical CO2, Fluid Phase Equilibria, 392, 95–103 (2015).

    Löbenberg, R., G. L. Amidon, Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards, Eur. J. Pharm. Biopharm., 50, 3-12 (2000).

    Lu, B. C.-Y., D. Zhang and W. Sheng, Solubility enhancement in supercritical solvents, Pure Appl. Chem, 62, 2277-2285 (1990).

    Lupia, R., S. D. Guerraa, C. Tellinia, R. Giannarellia, A. Coppellia, M. Lorenzettia, M. Carmellinib, F. Moscab, R. Navalesia, P. Marchettia, The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose, European Journal of Pharmacology, 364, 205-209 (1999).

    Mackay, D., A. Bobra, D. W. Chan, W. Y. Shiu, Vapor-pressure correlations for low-volatility environmental chemicals, Environ. Sci. Technol., 16, 645-649 (1982).

    Macnaughton, S. J., I. Kikic, N. R. Foster, P. Alessi, A. Cortesi, I. Colombo, Solubility of anti-inflammatory drugs in supercritical carbon dioxide, J. Chemical & Engineering Data, 41, 1083-1086 (1996).

    Medina, S. J., J. L. Bueno, Solubilities of zopiclone and nimodipine in supercritical carbon dioxide, J. Chemical & Engineering Data, 46, 1211-1214 (2001).

    Méndez-Santiago, J., A. S. Teja, The solubility of solids in supercritical fluids, Fluid Phase Equilib., 158–160, 501-510 (1999).

    Morales, J. O., A. B. Watts, J. T. McConville, Mechanical particle-size reduction techniques, formulating poorly water soluble drugs, 3, 133-170 (2012).

    Murga, R., M. T. Sanz, S. Beltran, J. L. Cabezas, Solubility of some phenolic compounds contained in grape seeds in supercritical carbon dioxide, J. of Supercritical Fluid, 23, 113-121 (2002).

    Murga, R., M. T. Sanz, S. Beltran, J. L. Cabezas, Solubility of three hydroxycinnamic acid in supercritical carbon dioxide, J. of Supercritical Fluids, 27, 239-245 (2003).

    Murga, R., M. T. Sanz, S Beltran, J. L. Cabezas, Solubility of syringic and vanillic acids in supercrtical carbon dioxide, J Chemical & Engineering Data, 49, 779-782 (2004)

    Nadi, A. B., T. M. Zhang, W. J. Malaisse, Effects of the methyl esters of pyruvate, succinate and glutamate on the secretory response to meglitinide analogues in rat pancreatic islet, Pharmacological Research, 33, 191-194 (1996).

    Peng, D. Y. and D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59-64 (1976).

    Reverchon, E. and A. Antonacci, Chitosan microparticles production by supercritical fluid processing, Ind. Eng. Chem. Research, 45, 5722-5728 (2006).

    Reid, R. C., J. M. Prausnitz B. E. Poling, The properties of gases and liquids, 4th ed., McGraw-Hill, New York (1987).

    Reverchon, E., G. Della Porta, Particle Design using supercritical fluids, Chem. Eng. Technol., 26, 840-845 (2003).

    Reverchon, E., R. Adami, S. Cardea and G. D. Porta, Supercritical fluids processing of polymers for pharmaceutical and medical applications, J. Supercrit. Fluids, 47, 484-492 (2009).

    Saravana, P.S., A. T. Getachew, Y. J. Cho, J. H. Choi, Y. B. Park, H. C. Woo, B. S. Chun, Influenceof co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2, J. of Supercrtical Fluids (in press)

    Sahle-Demessie, U. R. Pillai, S. Junsophonsri, K. L. Levien, Solubility of organic biocides in supercrtical CO2 and CO2 + cosolvent mixtures, J. Chemical & Engineering Data, 48, 541-547 (2003).

    Shojaee, S. A., H. Rajaei, A. Z. Hezave, M. Lashkarbolooki, F. Esmaeilzadeh, Experimental measurement and correlation for solubility of piroxicam (a non-steroidal anti-inflammatory drug (NSAIDs)) in supercritical carbon dioxide, J. of Supercritical Fluids, 80, 38-43 (2013).

    Shojaee, S. A., H. Rajaei, A. Z. Hezave, M. Lashkarbolooki, F. Esmaeilzadeh, Experimental investigation and modeling of the solubility of carvedilol in supercritical carbon dioxide, J. of Supercritical Fluids, 81, 42–47 (2013).

    Sovova, H., Solubilities of ferulic acid in supercritical carbon dioxide with ethanol as cosolvent, J. Chemical & Engineering Data, 46, 541-547 (2003).

    Stassi, A., R. Bettini, A. Gazzaniga, F. Giordano, A. Schiraldi, Assessment of solubility of ketoprofen and vanilliv acid in supercritical CO2 under dynamic conditions, J. Chemical & Engineering Data, 45, 161-165 (2000).

    Subramaniam, B., R. A. Rajewski, K. Snavely, Pharmaceutical processing with supercritical carbon dioxide, J. Pharm. Sci., 86, 885-890 (1997).

    Tabernero, A., E. M. M. del Valle, M. Á. Galán, A comparison between semiempirical equations to predict the solubility of pharmaceutical compounds in supercritical carbon dioxide, J. Supercrit. Fluids, 52, 161-174 (2010).

    Tabernero, A., E. M. Martín del Valle and M. A. Galán, Supercritical fluids for pharmaceutical particle engineering: methods, basic fundamentals and modelling, Chem. Eng. Process., 60, 9-25 (2012).

    Türk, M., Formation of small organic particles by RESS: experimental and theoretical investigations, J. Supercrit. Fluids, 15, 79-89 (1999).

    Türk, M., P. Hils, B. Helfgen, K. Schaber, H. J. Martin and M. A. Wahl, Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents, J. Supercrit., Fluids 22, 75-84 (2002).

    Tsai, C.C., H. M. Lin, M. J. Lee, Solubility of niflumic acid and celecoxib in supercritical carbon dioxide, J. of Supercritical Fluids, 95, 17–23 (2016).

    Ugaonkar, S., T. E. Needham, G. D. Bothun, Solubility and partitioning of carbamazepine in a two-phase supercritical carbon dioxide /polyvinylpyrrolidone system, Int. J. Pharm., 403, 96-100 (2011).

    Vatanara, A., A. R. Najafabadi, M. Khajeh, Y. Yammi, Solubility if some inhaled glucocorticoids in supercritical carbon dioxide, J. of Supercritical Fluids, 33, 21-25 (2005).

    Vemavarapu, C., M. Mollan, T. Needham, Crystal doping aided by rapid expansion of supercritical solutions, Pharm. Sci.Technol., 3, 17-31 (2002).

    Wesseling, H., I. Thurkow, G. J. Mulder, Effect of sulphonylureas (tolazamide, tolbutamide and chlorpropamide) on the metabolism of diphenylhydantoin in the rat, Biochem. Pharmacol., 22, 3033-3040 (1973).

    Yammi, Y., J. Hassan, S. Haghgo, Solubilities of some nitrogen-containing drugs in supercrticial carbon dioxide, J Chemical & Engineering Data, 46, 451-455 (2001).

    Yammi., Y., J. Arab, M. Asghari-khiavi, Solubilities of phenazopyridine, propranplol, and methimazole in supercrticial carbon dioxide, J. Pharmaceutical and Biomedical Analysis, 32, 181-187 (2003).

    Yarat, A., T. Tunali, R. Yanardag, F. Gursoy, O. Sacan, N. Eme kli, Ali. Ustuner, G. Ergenekon, The effect of glurenorm (gliquidone) on lenses and skin in experimental diabetes, Free Radical Biology & Medicine, 31, 1038–1042 (2001).

    York, P., Strategies for particle design using supercritical fluid technologies, Pharm. Sci.Technol. Today, 2, 30-440 (1999).

    無法下載圖示 全文公開日期 2018/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE