簡易檢索 / 詳目顯示

研究生: 車孟翰
Meng-Han Che
論文名稱: 尺寸效應下鈣鈦礦量子點之光譜分析
Size-dependent spectroscopic studies of perovskite quantum dots
指導教授: 蔡孟霖
Meng-Lin Tsai
陳祺
Chi Chen
口試委員: 蔡孟霖
Meng-Lin Tsai
陳祺
Chi Chen
蔡東昇
Dung-Sheng Tsai
陳詩芸
Shih-Yun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 鈣鈦礦量子點光譜原子力顯微鏡共焦顯微鏡
外文關鍵詞: perovskite quantum dot, spectrum, AFM, Confocal microscope
相關次數: 點閱:378下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鈣鈦礦量子點由於其光學特性容易由成分和製程調整,也有很高的發光量子產率(Photo-Luminescence Quantum Yield, PLQY),再加上製作方法簡單,故近年來鈣鈦礦量子點在半導體材料中極為流行,希望能發展為下一代顯示器的材料。然而其穩定性不佳,在大氣環境中,受到光照或是在較潮溼的環境下,鈣鈦礦量子點容易被破壞。
由於鈣鈦礦量子點為立方體結構,相對於傳統型量子點為近乎圓形結構,在表面分析上掌握度較高,能有很明顯的形貌區分。
本論文是希望藉由AFM掃描分散的量子點的高度來決定尺寸,再由共軛焦顯微鏡(confocal microscope)取得單顆量子點的螢光光譜和空間分布影像,以研究鈣鈦礦量子點的量子侷限效應。


The changes in size of quantum dots cause shifts of energy states. Also, the band gap between the valence band and the conduction band will be different. When the size of the quantum dot is smaller than de Broglie wavelength or Bohr radius, quantum confinement effect will become obvious.
Perovskite quantum dots (PQD) become very popular among semiconductor materials in recently years due to a few reasons. First, PQD have very high fluorescence quantum yield. Second, it is easy to tune optical properties through different compositions and reaction time. Third, the fabrication process is easy in usual laboratories. However, PQD are unstable in the ambient, humid environment or under light illumination. This is the major issue to be solved in PQD research.
Since PQD have cubic lattices, their appearances are quite distinct from the traditional quantum dots. It is easy to identify their heights and shapes by an atomic force microscope (AFM).
This thesis aims at investigating the quantum confinement effect of PQD. We first determining the size (height) of PQD by an AFM. Then we obtain the fluorescence mapping and spectrum of individual PQD. By analyzing the spectral shifts versus the size of each PQD, the quantum confinement effect is presented in results.

摘要 I Abstract II 誌謝 III 目錄 V 第1章 緒論 1 1.1 量子點基本性質 1 1.2 鈣鈦礦量子點基本性質 3 1.3 量子侷限效應(Quantum Confinement Effect) 8 1.4 研究動機與目的 11 第2章 文獻回顧 12 2.1 鈣鈦礦量子點合成方式 12 2.2 鈣鈦礦量子點之形貌分析 14 2.3 鈣鈦礦量子點之光學分析 16 2.4 鈣鈦礦量子點之穩定性 18 第3章 實驗方法 19 3.1 實驗流程 19 3.1.1 實驗藥品 19 3.1.2 實驗儀器 19 3.1.3 樣品製備 20 3.1.4 分析儀器 22 3.2 量測系統 23 3.2.1 原子力顯微鏡(Atomic Force Microscope) 23 3.2.2 共軛聚焦顯微系統(Confocal Microscope) 28 第4章 結果與討論 30 4.1 CsPbBr3鈣鈦礦量子點之形貌分析 30 4.1.1 穿透式電子顯微鏡(TEM)下之形貌 30 4.1.2 掃描電子顯微鏡(SEM)下之形貌 31 4.1.3 原子力顯微鏡(AFM)下之形貌 34 4.2 CsPbBr3鈣鈦礦量子點之光學分析 37 4.2.1 CsPbBr3鈣鈦礦量子點吸收光譜與螢光光譜 37 4.2.2 CsPbBr3鈣鈦礦量子點遠場光譜與AFM 38 第5章 結論 55 Reference 56

[1] International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue National Conference “IAEISDISE 2014”, 12-13 September 2014.
[2] Das, D., Gopikrishna, P., Barman, D., Yathirajula, R. B., & Iyer, P. K. (2019). White light emitting diode based on purely organic fluorescent to modern thermally activated delayed fluorescence (TADF) and perovskite materials. Nano Convergence, 6(1), 31.
[3] Akkerman, Q. A., D’Innocenzo, V., Accornero, S., Scarpellini, A., Petrozza, A., Prato, M., & Manna, L. (2015). Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. Journal of the American Chemical Society, 137(32), 10276-10281.
[4] Van der Stam, W., Geuchies, J. J., Altantzis, T., Van Den Bos, K. H., Meeldijk, J. D., Van Aert, S., . . . de Mello Donega, C. (2017). Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–x M x Br3 Perovskite Nanocrystals through Cation Exchange. Journal of the American Chemical Society, 139(11), 4087-4097. .
[5] Levchuk, I., Herre, P., Brandl, M., Osvet, A., Hock, R., Peukert, W., . . . Brabec, C. J. (2017). Ligand-assisted thickness tailoring of highly luminescent colloidal CH 3 NH 3 PbX 3 (X= Br and I) perovskite nanoplatelets. Chemical Communications, 53(1), 244-247.
[6] Peng, L., Tang, A., Yang, C., & Teng, F. (2016). Size-controlled synthesis of highly luminescent organometal halide perovskite quantum dots. Journal of Alloys and Compounds, 687, 506-513.
[7] Swarnkar, A., Marshall, A. R., Sanehira, E. M., Chernomordik, B. D., Moore, D. T., Christians, J. A., . . . Luther, J. M. (2016). Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 354(6308), 92-95.
[8] Ramalingam, G., Kathirgamanathan, P., Manivannan, N., & Kasinathan, K. (2020). Quantum Confinement Effect of 2D Nanomaterials. In Quantum Dots-Fundamental and Applications: IntechOpen.
[9] Zhang, F., Zhong, H., Chen, C., Wu, X.-g., Hu, X., Huang, H., . . . Dong, Y. (2015). Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS nano, 9(4), 4533-4542.
[10] Minh, D. N., Kim, J., Hyon, J., Sim, J. H., Sowlih, H. H., Seo, C., . . . Lee, S. (2017). Room-temperature synthesis of widely tunable formamidinium lead halide perovskite nanocrystals. Chemistry of Materials, 29(13), 5713-5719.
[11] Zhao, Y., Xu, X., & You, X. (2016). Colloidal Organometal Halide Perovskite (MAPbBr x I 3− x, 0≤ x≤ 3) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence. Scientific reports, 6(1), 1-8.
[12] Singh, B. P., Lin, S.-Y., Wang, H.-C., Tang, A.-C., Tong, H.-C., Chen, C.-Y., . . . Liu, R.-S. (2016). Inorganic red perovskite quantum dot integrated blue chip: a promising candidate for high color-rendering in w-LEDs. RSC advances, 6(83), 79410-79414..
[13] Nedelcu, G., Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Grotevent, M. J., & Kovalenko, M. V. (2015). Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I). Nano letters, 15(8), 5635-5640.
[14] Darmawan, Y. A., Yamauchi, M., & Masuo, S. (2020). In Situ Observation of a Photodegradation-Induced Blueshift in Perovskite Nanocrystals Using Single-Particle Spectroscopy Combined with Atomic Force Microscopy. The Journal of Physical Chemistry C, 124(34), 18770-18776..
[15] https://www.nanoscience.com/techniques/atomic-force-microscopy/
[16] Baskoutas, S., & Terzis, A. F. (2006). Size-dependent band gap of colloidal quantum dots. Journal of applied physics, 99(1), 013708.
[17] Ho, J. C. (2009). Organic lateral heterojunction devices for vapor-phase chemical detection. Massachusetts Institute of Technology.
[18] Zhang, X., Qian, Y., Ling, X., Wang, Y., Zhang, Y., Shi, J., . . . Ma, W. (2020). α-CsPbBr3 Perovskite Quantum Dots for Application in Semi-Transparent Photovoltaics. ACS Applied Materials & Interfaces.

無法下載圖示 全文公開日期 2025/12/21 (校內網路)
全文公開日期 2025/12/21 (校外網路)
全文公開日期 2025/12/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE