簡易檢索 / 詳目顯示

研究生: 陳彥吟
Yen Yin Chen
論文名稱: 以自混波形式之混波器實現可應用於圓極化主動天線之量測系統
Circular Polarization Measuring System Using Self-Mixing Mixers applicable to CP active antenna.
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 林坤佑
Kun-You Lin
廖文照
Wen-Jhao Liao
陳筱青
Siao-Jing Chen
賴季暉
Ji-Huei Lai
馬自莊
Tzyh-Ghuang Ma
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 天線極化量測量測系統自混波形式之混波器主動天線量測極化系統
外文關鍵詞: antenna polarization measuring, measurement system, self-mixing mixers, circular polarization measuring system applicable to CP active antenna
相關次數: 點閱:391下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主旨,乃提出兩款以自混波形式之混波器實現可應用於圓極化天線之量測系統。此量測系統設計初衷為使天線量測更為簡易,並解決現今常用量測系統無法量測主動式天線之極化特性困難。本論文共提出兩種系統架構,經過公式推導及實驗驗證,此兩種架構之表現皆能與設計初衷符合。
    定義極化之關鍵條件為:兩互相垂直之電場之相位差及振幅,若可量測此兩關鍵之條件,即可定義天線之極化特性。吾人利用數學推導方式,架構整個量測系統。經觀察數學公式,進一步導出量測相位和量測振幅之電路模型,並分別提出兩種不同的量測系統電路架構。
    首款量測相位系統,乃將低雜訊功率放大器、威爾金森功率分配器、混頻器、接收天線等構成元件連接整合成一量測系統,最後利用三用電表得到最後結果,並經過數學換算得到最後量測結論。其次,以前一款設計為基礎,使用不同電路佈局實現一款量測振幅系統。兩款系統經實測驗證,均顯示推論模擬公式與量測響應吻合。使用已知圓極化天線進行該兩款圓極化系統之量測,確實可量測並定義出圓極化之特性,故實驗結果與初衷吻合。經實驗證明,此兩款量測系統可定義天線之極化特性。


    A circular polarization measuring system using self-mixing mixers applicable to CP active antenna concept was proposed and demonstrated in this thesis. The design goal is to simplify the antenna polarization measurement as well as to tackle the common problem of measuring the polarization of the active integrated antenna (AIA). It consists of two different configurations for measuring the magnitude and phase difference between two orthogonal E-field components.
    To realize the proposed systems, the basic principle of the antenna polarization is firstly explored. The closed form equations, describe the relationship between antenna polarization and characteristics of the two orthogonal E-field vectors, are then determined accordingly. Based on the general formula, the two corresponding sub-systems for measuring the magnitude and phase difference of two E-field vectors are built and tested.
    In the experiments, all core components such as low noise amplifier, Wilkinson power divider, mixer and receiving antennas are integrated as a whole for measuring the phase difference parameters. The raw data were manipulated based on general formulae to achieve final results. Base on the first design, the amplitude measurement system was built by slightly modifying the structure. Two sub-systems were utilized to measure some typical linearly and circularly polarized antennas. The results were compared to the one obtained by commercial measurement system. All measured results are in good agreement, which validates the design concept.

    目錄 摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 5 1.4 論文組織 6 第二章 以自混波形式之混波器實現可應用於圓極化天線之量測系統之原理 7 2.1 前言 7 2.2 設計原理與電路架構 7 2.2.1 電磁波極化原理 7 2.2.2 量測相位系統設計原理與電路架構 15 2.2.3 量測振幅系統設計原理與電路架構 19 2.3 結語 22 第三章 以自混波形式之混波器實現可應用於圓極化天線量測系統之實驗驗證 23 3.1 前言 23 3.2 天線圓極化量測系統之構成元件 23 3.2.1 雙極化天線 23 3.2.2 低雜訊功率放大器 27 3.2.3 威爾金森等功率分配器 33 3.2.4 自混波之混波器 35 3.3 圓極化量測相位/振幅系統之整合電路 42 3.3.1 圓極化量測相位系統(Mea. Phase System) 42 3.3.2 圓極化量測相位系統(Mea. Amplitude System) 45 3.4 圓極化量測相位/振幅系統之量測驗證 47 3.4.1 圓極化量測相位/振幅系統於無反射實驗室量測架設 47 3.4.2 待測天線(AUT)之量測架設 48 3.4.2.1 雙極化天線及可調相移器 49 3.4.2.2 線性極化之偶極天線 50 3.4.2.3 左手圓極化之槽孔天線 52 3.4.2.4 右手圓極化之平板天線 56 3.4.3 圓極化量測相位/振幅系統量測之校正結果 60 3.4.4 圓極化量測相位/振幅系統量測結果 63 3.4.4.1 量測相位系統量測雙極化天線及可調相移器 63 3.4.4.2 量測振幅系統量測線性極化之偶極天線 67 3.4.4.3 量測相位/振幅系統量測兩款圓極化天線 69 3.4.5 圓極化量測相位/振幅系統於無反射室外之量測結果 74 3.5 結語 76 第四章 結論 77 4.1 總結 77 4.2 未來發展 78 參考文獻 79

    [1] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, UK. Cambridge Univ. Press, pp. 16–45, Dec.2004.
    [2] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today's intranet of things to a future internet of things: a wireless- and mobility-related view,” IEEE Wireless Communications, vol. 17, pp. 44–51, 2010.
    [3] M. Zhang, F. Sun, and X. Cheng, “Architecture of internet of things and its key technology integration based-on RFID, ” in Proc. Int. Symp. on Computational Intelligence Design, pp. 380–384 , 2012.
    [4] W.-J. Liao, T.-G. Ma, C.-F. Yang and H.-W. Liu, “Novel antenna designs for applications in modern wireless communication systems,” European Conf. Antennas Publication (EUCAP), pp. 380–384, 2013.
    [5] T. Milligan, “Polarization loss in a link budget when using measured circular-polarization gains of antennas,” IEEE Antennas Propag. Mag., vol. 38, pp. 56-58, 1996.
    [6] M.-H. Lee, C.-Y. Yao, and H.-C. Liu, “Passive tag for multi-carrier RFID systems,” in Proc. IEEE 17th Int. Conf. on Parallel and Distributed Systems, 2011, pp. 872–876.
    [7] Y.-Y. Lin, C.-H. Wu, and T.-G. Ma, “Miniaturized self-oscillating annular ring active integrated antennas,” IEEE Trans. Antennas Propag.,vol. 59, no. 10, pp. 3597–3606, Oct. 2011.
    [8] C.-H. Wu and T.-G. Ma, “Self-oscillating dual-ring active integrated antenna” IEEE Int. Symp. on Antennas and Propagation Digest, 2011, pp. 2457-2460.
    [9] C.-H. Wu and T.-G. Ma, “Miniaturized self-oscillating active integrated antenna with quasi-isotropic radiation,” IEEE Trans. Antennas Propag, vol. 62, no. 2, pp.933-936 , Feb. 2014.
    [10] C.-H. Wu and T.-G. Ma, “Self-oscillating semi-ring active integrated antenna with frequency reconfigurability and voltage-controllability,” IEEE Trans. Antennas Propag, vol. 61, no.7 , pp.3880-3885 , Jul. 2013.
    [11] C.-H. Wu and T.-G. Ma, “Pattern-reconfigurable self-oscillating active integrated antenna with frequency agility,” IEEE Trans. Ant. Propag., vol. 62, no. 12, pp. 5992-5998, Dec. 2014.
    [12] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed, Hoboken, New Jersey, John Wiley & Sons, 2005.
    [13] C. A. Balanis, Modern Antenna Handbook. Hoboken, New Jersey, John Wiley & Sons, 2008, pp. 977–1030.
    [14] B. Mȍhring, M. Limbach, B. Gabler, and A. Di Maria, “Modular Simulation of a Compact Antenna Test Range,” 11th European Conf. Antennas Publication (EUCAP), 2017.
    [15] M. W. Shields and A. J. Fenn, “A New Compact Range Facility for Antenna and Radar Target Measurements,” Lincoln laboratory journal, vol. 16, no. 2, 2017.
    [16] B. Svensson, R. Gustafsson, P. Hultman, P.-Å Hansson, C. Augustsson, A. Jernberg, and C. Seupel, “A New Compact Antenna Test Range for EW-Antenna System Production Testing,” 11th European Conf. Antennas Publication (EUCAP), 2017.
    [17] IEEE Recommended Practice for Near-Field Antenna Measurements, IEEE Standard 1720, 2012
    [18] E. B. Joy, “A brief history of the development of the near-field measurement technique at the Georgia Institute of Technology,” IEEE Trans. Antennas Propag., vol. 36, no. 6, pp. 740–745, Jun. 1988.
    [19] M. D. Foegelle, “Antenna pattern measurement: concepts and techniques,” Reprinted from Compliance Engineering, Annual Reference Guide 2002.
    [20] A. D. Yaghjian, “An overview of near-field antenna measurements”, IEEE Trans. Antennas Propag., vol. AP-34, Jan, pp. 30–45, 1986.
    [21] S. Balma, D. Picard, and P. Meisse, “Far field pattern and gain measurement in planar near field techniques,” 11th European Conf. Antennas Publication (EUCAP), 2017.
    [22] W. M. Leach and L.W. Longdon, “Probe compensated near-field measurements on a cylinder,” IEEE Trans. Antennas Propagat., vol. AP-21, no. 4, pp. 435-445, July 1973.
    [23] E. Joy, W. Leach, and G. Rodrigue, “Application of probe-compensated near-field measurements,” IEEE Trans. Antennas Propagat., vol. 26, pp. 379-389, 1978.
    [24] Y. Ȍztȕrk and F. Ȕstȕner, “Design and realization of a planar near field antenna measurement system”, in URSI General Assembly and Scientific Symp., pp. 1-4, 2011.
    [25] S. Silver, Microwave Antenna Theory and Design. New York: McGraw Hill, chs. 5 and 6, 1949.
    [26] P. Petre and T. K. Sarkar, “Planar near-field to far-field transformation using an equivalent magnetic current approach”, IEEE Trans. Antennas Propag., vol. 40, no. 11, 1992.
    [27] R. C. Johnson, H. A. Ecker, and J. S. Hollis, “Determination of far-field antenna patterns from near-field measurements”, in Proc. IEEE., vol. 61, no. 12, pp. 1668-1694, 1973.
    [28] 電子工程世界,2015
    [Online],Available: http://www.eeworld.com.cn/Test_and_measurement/2015/0807/article_12646.html
    [29] Rao, Elements of Engineering Electromagnetics, 6th ed., Nannapaneni Narayana Rao, University of Illinois at Urbana-Champaign, pp. 160-184.
    [30] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed., New Jersey, John Wiley & Sons, pp146-162, 2012.
    [31] W. L. Stutzman and G. A. Thiele, Antenna Theory And Design, 2nd ed., New Jersey, John Wiley & Sons, pp. 48-52, 1998.
    [32] D. M. Pozar, Microwave Engineering, 4th ed, New Jersey, John Wiley & Sons, 2012.
    [33] 張立, 以複合式左右手合成傳輸線實現雙天線整合信號回溯/波束切換陣列天線, 台灣科技大學電機工程系碩士學位論文, 民國104.
    [34] The datasheet of LNA Avago-MGA-665P8 [Online].
    Available: http://www.avagotech.com/docs/AV02-0847EN
    [35] The datasheet of Mixer HMC423MS8E [Online].
    Available:http://www.analog.com/media/en/technical-documentation/data-sheets/hmc423.pdf
    [36] Y. -M. Lin and J. -S. Row, “Circularly-Polarized Slotted-Patch Antennas Fed with Microstrip-to-Slot line Baluns”, IEEE 5th APCAP., pp. 147-148, 2016
    [37] Y. Yao, J. Yu, and X. Chen, “Broadband planar antenna with circular polarization for RFID readers”, IEEE Int. Wireless Symposium, pp. 1-3, 2013

    QR CODE