簡易檢索 / 詳目顯示

研究生: 黃維澤
WEI-TZER HUANG
論文名稱: 配電饋線由放射型升級為常閉環路型之研究
Study of Upgrading Distribution Feeders from Radial to Normally Closed-Loop Arrangement
指導教授: 陳在相
TSAI-HSIANG CHEN
口試委員: 陳建富
JIANN-FUH CHEN
陳士麟
SHI-LIN CHEN
劉志文
CHIH-WEN LIU
辜志承
JYH-CHERNG GU
許炎豐
YEN-FENG HSU
陳朝順
CHAO-SHUN CHEN
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 144
中文關鍵詞: 配電饋線放射型常閉環路型短路容量法
外文關鍵詞: distribution feeders, radial, closed-loop, short-circuit MVA method
相關次數: 點閱:275下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究配電饋線型態升級之問題。藉由兩放射型饋線互連可形成四種可能的常閉環路饋線型態,亦即:(1)二條饋供自同一變電所同一主變之饋線互連形成之典型常閉環路饋線—Type I;(2)二條引接自同一變電所不同主變之饋線互連形成跨越主變常閉環路饋線,此一型態又可進一步區分為二個次型態,連絡斷路器常開型—Type II.1與連絡斷路器常閉型—Type II.2;(3)二條由不同變電所不同主變饋供之饋線互連形成互連型常閉環路饋線。由於饋線型態不同,升級的影響因素以及相關的配套措施自然有所差異;此外,各型態之運轉特性、操作方式、可行性以及供電可靠度亦各自有異,值得深入探究。
    本論文首先提出既有放射型配電饋線升級為常閉環路型的四種可能型態。其次,依據四種可能之常閉環路型態,作一完整之學理探討,分析配電饋線升級之影響因素,隨之,推導饋線沿線的短路容量公式,以便分析配電饋線升級前後在不同系統參數及型態下,饋線沿線短路容量變化情形,並探討配電饋線升級前後以及升級後在非常態運轉情況下之電力潮流、電壓降以及主變壓器與其饋線負載量變化情形;此外,更推導配電饋線升級前後之線路損失公式,分析電路結構改變對線路損失的影響情形;另外,亦探討、分析含負載轉供機制較為可行之常閉環路系統架構、運轉操作方式,以及主變壓器及其饋線之常態運轉最高負載量與利用因數。最後,綜合歸納整理饋線型態升級所造成之影響及衝擊,並研擬相關配套措施,同時作一總結。本論文所呈現之各項研究成果,可供配電系統相關人員從事配電饋線升級規劃,以及運轉與維護常閉環路饋線之重要參考。


    This dissertation examines the issues of upgrading distribution feeders from radial to nominally closed loop arrangements. Four types of normally closed loop arrangement will possibly be formed by tying two existing radial feeders at their ends normally. First, two radial feeders fed by a substation transformer to form a typical normally closed loop named as Type I; second, two radial feeders fed by two different substation transformers located at the same distribution substation to form a cross-transformer-type normally closed loop. The latter type is further divided into two subtypes based on whether the tie breaker of the secondary buses of the two transformers is normally closed or open, the tie breaker is normally open named as Type II.1, and the tie breaker is normally closed named as Type II.2; third, two radial feeders are fed by two different transformers located in different substations to form an interconnection-type normally closed loop name as Type III. Because of the difference in these four types of feeder arrangements, the factors affected the upgrading of distribution feeder and the required supporting measures are quite different. Besides, the operating characteristics, the mode of operations, the feasibility, and the reliability are divergent naturally. Accordingly, it is worthy of further study.
    First of all, four possible feeder arrangements for forming a normally closed loop upgrading from existing radial feeders are proposed, and then the factors that may predominately affect the distribution feeder upgrading are discussed theoretically. Next, the variations of short-circuit capacities along a feeder before and after the distribution feeder upgraded under different parameters and types were evaluated via the derivation of the short-circuit capacities formulas. And the power flows, voltage drops, and loading variations of the substation transformers and the feeders were also discussed before and after the distribution feeder upgraded, as well as the abnormal operations after the distribution feeder upgraded. Additionally, the resistive line loss formulas were derived to analyze the impacts on line loss due to the changing of the structure of distribution feeders; and further, the feasible closed loop feeder arrangements with load transfer, the corresponding operating modes, and the maximum loadings as well as utilization factors of the substation transformers and feeders under normal operation condition were explored here. Finally, to sum up the impacts of distribution feeders upgrading, the required supporting measures have been drawn up. The outcomes are of value to the distribution engineers while planning to upgrade the distribution feeder, and operating and maintaining the closed loop type of feeder arrangement.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 符號索引 IX 圖表索引 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與步驟 5 1.3 主要貢獻 7 1.4 論文架構 9 第二章 饋線型態升級之影響因素分析 11 2.1 前言 11 2.2 饋線型態簡介 12 2.3 影響因素之探討與分析 14 2.3.1 Type I 15 2.3.2 Type II 17 2.3.3 Type III 18 2.4 綜合分析與討論 19 第三章 饋線型態升級對饋線沿線短路容量之影響分析 21 3.1 前言 21 3.2 問題描述與求解方法 22 3.2.1 問題描述 22 3.2.2 短路容量法 24 3.3 數理分析與探討 27 3.3.1 放射型架構 29 3.3.2 常閉環路型架構 31 3.4 綜合比較與分析 37 3.5 本章結論 43 第四章 饋線型態升級對系統運轉特性之影響分析 44 4.1 前言 44 4.2 範例系統設計及分析案例說明 45 4.3 模擬結果之分析與探討 49 4.3.1 Type I 49 4.3.2 Type II.1 52 4.3.3 Type II.2 55 4.3.4 Type III 57 4.4 綜合比較與分析 60 4.5 本章結論 61 第五章 饋線型態升級對線路損失之影響分析 62 5.1 前言 62 5.2 問題描述 63 5.3 線路損失關係式推導 68 5.4 範例系統分析 72 5.4.1 範例系統及相關參數設定說明 72 5.4.2 模擬結果分析與探討 75 5.5 本章結論 76 第六章 含負載轉供機制之常閉環路系統架構及其運轉方式之探討與分析 81 6.1 前言 81 6.2 系統規劃的考量因素與原則 82 6.3 Type I之系統架構及其運轉方式 83 6.3.1 系統架構 84 6.3.2 運轉方式 89 6.4 Type II之系統架構及其運轉方式 91 6.4.1 系統架構 92 6.4.2 運轉方式 98 6.5 Type III之系統架構及其運轉方式 100 6.5.1 系統架構 100 6.5.2 運轉方式 101 6.6 綜合比較與分析 103 第七章 饋線型態升級之影響與衝擊及其相關配套措施 105 7.1 前言 105 7.2 影響與衝擊 106 7.3 相關配套措施 108 7.4 綜合考量 111 7.4.1 負載轉供點之選定原則 111 7.4.2 主環路開關投入注意事項 124 7.4.3 有載下負載轉供之條件 125 7.5 本章結論 126 第八章 結論與未來研究方向 127 8.1 結論 127 8.2 未來研究方向 129 參考文獻 130 作者簡介 138 授權書 144

    [1] T. H. Chen and J. T. Cherng, “Design of a TLM Application Program Based on an AM/FM/GIS System,” IEEE Transactions on Power Systems, Vol. 13, pp. 904-909, August (1998).
    [2] P. Heine, A. Lehtonen and E. Lakervi, “Voltage Sag Analysis Taken Into Account in Distribution Network Design,” IEEE Power Tech Proceedings, Porto , Vol. 3 , 10-13 September (2001).
    [3] M. Lehtonen, A. Matsinen, E. Antila, J. Kuru, P. Vuorenpaa, E. Matinlassi, and S. Pettissalo, “Automatic Fault Management in Distribution Networks,” 16th International Conference and Exhibition on Electricity Distribution Part 1: Contributions CIRED, No. 482, Vol. 3, 18-21 June (2001).
    [4] Y. T. Chao, S. T. Lee, H. C. Chang and T. H. Chen, “An Improvement Project for Distribution Transformer Load Management in Taiwan,” IEEE Transactions on Power Systems, Vol. 18, pp. 875- 881, May (2003).
    [5] S. Kearney, “How Outage Management Systems Can Improve Customer Service,” IEEE 8th International Conference on Transmission & Distribution Construction, Operation & Live-Line Maintenance, pp. 172-178, 26-30, April (1998).
    [6] D. C. Nelson, “Evaluation, Selection and Implementation of An AM/FM System,” the 37th Annual Conference, Rural Electric Power Conference, pp. B1/1-B1/8, 25-27 April (1993).
    [7] T. E. Lee, C. S. Chen, Y. M. Tzeng, M. S. Kang, C. C. Lee, J. S. Wu, T. S. S. Liu and Y. M. Chen, “The Application of AM/FM System to Distribution Contingency Load Transfer,” IEEE Transactions on Power Delivery, Vol. 10, pp. 1126-1135, April (1995).
    [8] Y. L. Ke, “Application of GCN Approach for Power Distribution System Contingency Load Transfer,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 150, pp. 717-721, November (2003).
    [9] C. C. Liu, S. J. Lee and S. S. Venkata, “An Expert System Operational Aid for Restoration and Loss Reduction of Distribution Systems,” IEEE Transactions on Power Systems, Vol. 3, pp. 619-626, May (1988).
    [10] Youman Deng, Le Cai and Yixin Ni, “Algorithm for Improving the Restorability of Power Supply in Distribution Systems,” IEEE Transactions on Power Delivery, Vol.18, pp. 1497-1502 (2003).
    [11] J. Marks, “New Technology Improves Loop-Feeder Sectionalizing,” Electrical World, pp.34-36, February (1997).
    [12] Y. Fukuyama and H. D. Chiang, “A parallel genetic algorithm for service restoration in electric power distribution systems,” IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium, vol.1, pp. 275-282.
    [13] J. Reson, “Customer Demand for Quality Spur Feeder Sectionalizing,” Electrical World, pp.32-35, November (1990).
    [14] D. Shirmohammadi, “Service Restoration in Distribution Networks via Network reconfiguration,” IEEE Transactions on Power Delivery, Vol. 7, No. 2, pp. 952-958, April (1992).
    [15] E. Lakervi and E. J. Holmes, Electricity distribution network design, 2nd ed., London, United Kingdom: Perter Peregrinus Ltd., pp. 176-177 (1995).
    [16] A. A. Chowdhury and D. O. Koval, “Value-Based Distribution System Reliability Planning,” IEEE Transactions on Industry Applications, Vol. 34, No. 1, pp. 23-29, January (1998).
    [17] R. E. Brown and J. R. Ochoa, “Distribution System Reliability: Default Data and Model Validation,” IEEE Transactions on Power Systems, Vol. 13, pp. 704-709 (1998).
    [18] R. E. Brown, S. Gupta, R. D. Chrictie, S. S. Ventata, and R. Fletcher, “Distribution System Reliability Assessment Using Hierarchical Markvo Modeling,” IEEE Transactions on Power Delivery, Vol. 11, pp. 1929-1934 (1996).
    [19] J. G. Tine and D. A. Walder, “Improved Distribution System Reliability at Northeast Utilities: a Case History,” IEEE Transactions on Power Delivery, Vol. 8, No. 2, pp. 689-696, April (1993).
    [20] 陳在相、黃維澤,「配電系統型態與變電所饋線數選用原則與效益分析—總計畫及子計畫一:配電系統型態及其與配電自動化之互動研究」,國科會電力科技產業學術合作研究計劃,完成報告,NSC 89-TPC-011-001,國立臺灣科技大學,台北,25 August (2000).
    [21] James J. Burke, Power Distribution Engineering: fundamentals and applications, Marcel Dekker Inc (1994).
    [22] Barry. Pagel, “Energizing International Drive,” Transmission & Distribution World, pp.18-34, April (2000).
    [23] J. C. Appleyard, D. A. Myers and J. K. Niemira, “Innovations in Use of Microprocessor Relays and Controls for Improved Reliability on the Distribution System,” in Proc. 2001 IEEE/PES Transmission and Distribution Conference and Exposition,Vol. 1, pp. 293-298 (2001).
    [24] J. C. Tobias, F. Sautriau, D. J. Hull and S. Fabray, “Improved Quality of Supply in MV Distribution Networks Using Directional Blocking Scheme,” CIRED 97, IEE Publication No. 438, pp. 4.29.1-5 (1997).
    [25] R.P. Leeuwerke, A.L Brayford, A. Robinson, J.C. Tobias, “Developments in ring main unit design for improved MV network performance,” Power Engineering Journal, Vol. 14 Issue: 6, pp. 270-277, December (2000).
    [26] J. C. Tobias, R. P. Leeuwerke, A. L. Brayford and A. Robinson, “The Use of Sectionalising Circuit Breakers in Urban MV Distribution Networks,” Trends in Distribution Switchgear, IEE Publication No. 459, pp. 102-108 (1998).
    [27] T. C. Yu, Principles and Design of Low Voltage Systems, Singapore: Byte Power Publications, pp. 13-14 (1996).
    [28] W. T. Huang, T. H. Chen, G. C. Pu, Y. F. Hsu and T. Y. Guo, “Assessment of Upgrading Existing Primary Feeders from Radial to Normally Closed Loop Arrangement,” in Proc. 2002 IEEE Power Engineering Society Transmission and Distribution Conf., pp. 2123-2128 (2002).
    [29] T. H. Chen, W. T. Huang, G. C. Pu, Y. F. Hsu and T. Y. Guo, “Feasibility Study of Upgrading Primary Feeders from Radial and Open-Loop to Normally Closed-Loop Arrangement,” IEEE Transactions on Power Systems, pp. 1308-1316 (2004).
    [30] T. Gönen, Electric Power Distribution System Engineering, McGraw-Hill, New York, (1986).
    [31] Yuen, M. H., Short circuit ABC, Gas Industries Association, San Francisco, (1975).
    [32] Chen, T. H., “Complex short circuit MVA method for power system studies,” IEE Proceedings on Generation, Transmission and Distribution, Vol. 141, pp. 81-84 (1994).
    [33] Chen, T. H. and Chuang, H. J., “Applications of the complex short- circuit MVA method to power flow studies,” Electric Power Systems Research, pp.135-143 (1996).
    [34] 陳在相、辜志承、黃維澤、林金順、蔡金龍、于尚禮、蒲冠志、許炎豐,「配電系統採常閉環路可行性研究」,臺灣電力股份有限公司八十九年研究計劃531-2103-06,計畫編號(GRB檔):88-2103-07,完成報告,研發建字第1225號,電機建字第0095號,台灣科技大學,台北,31 October (1999).
    [35] 陳在相、辜志承、黃維澤、沈混源、游伯煌、趙恆寬、蒲冠志、許炎豐,「配電系統採同一主變常閉環路之建置」,臺灣電力股份有限公司八十九年研究計劃,計畫編號(GRB檔):2103-13,期末報告,研發建字第1478號,電機建字第0136號,國立臺灣科技大學,台北,31 May (2001).
    [36] T. H. Chen and S. W. Wang, “Applications of simplified bi-directional feeder models for accelerating the voltage-drop and power-loss calculations,” in Proc. 1995 Energy Management and Power Delivery Conf. on vol. 2, pp. 708-713 (1995).
    [37] T. H. Chen and S. W. Wang, “Simplified bidirectional-feeder models for distribution-system calculations,” Proc. IEE, vol. 1425, pp. 459-467, September (1995).
    [38] N. Vemptati, R. R. Shoults, M. S. Chen and L. Schwobel, “Simplified Feeder modeling for Load Flow calculations,” IEEE Trans. Power Systems, vol. PWRS-2, no. 1, pp. 168-174, February (1987).
    [39] E. R. Ramos, J. L. Martinez-Ramos, A. G. Exposito and A. J. U. Salado, “Optimal Reconfiguration of Distribution Networks for Power Loss Reduction,” Power Tech Proceedings, 2001 IEEE Porto, Vol. 3, 10-13 September (2001).
    [40] M. E. Baran and F. F. Wu, “Network Reconfiguration in Distribution Systems for Loss Reduction and Load Balancing,” IEEE Transactions on Power Delivery, Vol. 4, Issue: 2, pp. 1401-1407, April (1989).
    [41] A. Merlin and H. Back, “Search for a Minimal-Loss Operating Spanning Tree Configuration in an Urban Power Distribution System,” Proc. 5th Power System Computation Conference (PSCC), Cambridge, United Kingdom, pp.1-18, (1975).
    [42] D. Shirmohammadi and H. W. Hong, “Reconfiguration of Electric Distribution Networks for Resistive Line Losses Reduction,” IEEE Transactions on Power Delivery, Vol. 4, No. 2, pp. 1492-1498, April (1989).
    [43] R. Taleski and D. Rajicic, “Distribution Network Reconfiguration for Energy Loss Reduction,” IEEE Transactions on Power Systems, Vol. 12, No. 1, pp. 398-406, February (1997).
    [44] W. M. Lin and H. C. Chin, “A New Approach for Distribution Feeder Reconfiguration for Loss Reduction and Service Restoration,” IEEE Transactions on Power Delivery, Vol. 13, No. 3, pp. 870-875, July, (1998).
    [45] C. S. Chen, J. S. Wu and Y. N. Chang, “Criteria for Interfeeder Switching in Distribution Systems,” IEE Proceedings-C, Vol. 135, No. 5, pp. 461-467 (1988).
    [46] Y. T. Hsiao and C. Y. Chien, “Multiobjective optimal feeder reconfiguration,” IEE Proceedings- Generation, Transmission and Distribution, Vol. 148, Issue: 4, pp. 333 – 336, July (2001).
    [47] Y. Zhao, J. Li and D. Xia, “Distribution network optimal operation for loss reduction and harmonic mitigation,” Proceedings of Power System Technology, PowerCon 2002, Vol. 4, pp. 2522 – 2525, October (2002).
    [48] T. H. Chen and J. T. Cherng, “Optimal Phase Arrangement of Distribution Transformers Connected to a Primary Feeder for System Unbalance Improvement and Loss reduction Using a Genetic Algorithm,” IEEE Transactions on Power Systems, Vol. 15, Issue: 3, pp. 994-1000, August (2000).
    [49] W. M. Lin, Y. S. Su, S. C. Chang, M. T. Tsay and S. J. Chen, “The optimal loss reduction of distribution feeder based on special distribution transformers reconnection using genetic algorithm,” Proceedings of Power System Technology, PowerCon 2000, , Vol. 3, pp. 1413-1418, December (2000).
    [50] G. Levitin, A. Kalyuzhny, A. Shenkman and M. Chertkov, “Optimal capacitor allocation in distribution systems using a genetic algorithm and a fast energy loss computation technique,” IEEE Transactions on Power Delivery, Vol. 15 , Issue: 2 , pp. 623-628, April (2000).
    [51] B. A. de Souza, Hd. N. Alves and H. A. Ferreira, “Microgenetic algorithms and fuzzy logic applied to the optimal placement of capacitor banks in distribution networks,” IEEE Transactions on Power Systems, Vol. 19, Issue: 2, pp. 942-947, May (2004).
    [52] M.H. Haque, “Capacitor placement in radial distribution systems for loss reduction,” IEE Proceedings- Generation, Transmission and Distribution, Vol. 146, Issue: 5, pp. 501-505, September (1999).
    [53] T. C. Yu, Principles and Design of Low Voltage Systems, Singapore: Byte Power Publications, pp. 13-14, (1996).
    [54] B. Pagel, “Energizing International Drive,” Transmission & Distribution World, pp.18-34, April (2000).
    [55] R. P. Leeuwerke, A. L. Brayford, A. Robinson, and J. C. Tobias, “Developments in ring main unit design for improved MV network performance,” Power Engineering Journal, Vol. 14 , Issue: 6, pp.270- 277,December (2000).
    [56] J. C. Tobias, F. Sautriau, D. J. Hull and S. Fabray, “Improved Quality of Supply in MV Distribution Networks Using Directional Blocking Scheme”, CIRED 97, IEE Publication No. 438, pp. 4.29.1-5, (1997).
    [57] Wei-Tzer Huang, Tsai-Hsiang Chen, Guan-Chih Pu, Yen-Feng Hsu and Tzong-Yih Guo, “Assessment of Upgrading Existing Primary Feeders from Radial to Normally Closed Loop Arrangement,” Proceedings of the IEEE / PES Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, Yokohama, Japan, pp. 2123-2128, October (2002).
    [58] Wei-Tzer Huang, Tsai-Hsiang Chen, Jyh-Cherng Gu, Heng-Kuan Chao, Guan-Chih Pu, Yen-Feng Hsu and Tzong-Yih Guo, “Analysis of the Operating Characteristics of Normally Closed Rings Fed by the same Main Transformer,” Proceedings of the 22nd Symposium on Electrical Power Engineering, Kaoshiung, Taiwan, pp. 869-872, November (2001).
    [59] Tsai-Hsiang Chen, Jyh-Cherng Gu, Wei-Tzer Huang, Heng-Kuan Chao, Kun-Yuan Shen, Tsung-Ling Chuang, Guan-Chih Pu and Yen-Feng Hsu, “Analysis of Characteristics of Normally Closed Loop Primary Feeders Fed by Distinct Transformers in a Substation,” Proceedings of the 23rd Symposium on Electrical Power Engineering, Taoyuan, Taiwan, pp. 1046-1050, December (2002).
    [60] Jyh-Cherng Gu, Tsai-Hsiang Chen, Kun-Yuan Shen, Wei-Tzer Huang, Tsung-Ling Chuang, Heng-Kuan Chao, Tzong-Yih Guo, Guan-Chih Pu, Yen-Feng Hsu, “Protection Coordination Analysis of Closed-Loop Distribution System,” Proceedings of the 23rd Symposium on Electrical Power Engineering, Taoyuan, Taiwan, pp. 1026-1030, December (2002).
    [61] Willian H. Kersting, Distribution System Modeling and Analysis, CRC Press, (2002).
    [62] Kao Chen, Industrial power distribution and illuminating systems, Marcel Dekker Inc., (1990).
    [63] 陳在相、辜志承、黃維澤、沈混源、趙恆寬、莊宗霖、蒲冠志、許炎豐,「配電系統採同一變電所不同主變常閉環路建置研究」,臺灣電力股份有限公司九十年研究計劃,計畫編號(GRB檔):2103-05,期末報告,研發建字第1478號,電機建字第0136號,國立臺灣科技大學,台北,31 May (2002).
    [64] 李宏任,實用保護電驛,全華科技圖書股份有限公司,April (2000).
    [65] 成政田,配電系統個別相負載計算技巧及其應用,國立台灣科技大學博士論文,民國八十八年。
    [66] 王錫文,配電系統規劃與分析用之簡化饋線模型推導與應用,國立台灣工業技術學院博士論文,民國八十五年。

    QR CODE