簡易檢索 / 詳目顯示

研究生: 何技殷
Chi-Yin Ho
論文名稱: 矽基奈米結構之製備與特性分析
Synthesis and characteristic of the silicon-based nanostructure
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 趙良君
Liang-Chun Chao
楊文祿
Wen-Lu Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 128
中文關鍵詞: 電漿後處理矽奈米線束
外文關鍵詞: post-treatment of plasma, bundles of silicon nanowires
相關次數: 點閱:281下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要是利用熱化學氣相沉積法成長二氧化矽奈米線,利用XeF準分子雷射系統對二氧化矽奈米線進行不同雷射能量之前處理與後處理,使用電子顯微鏡、富利葉轉換紅外線光譜儀及X射線光電子能譜儀光譜分析其特性。此外,通道式選擇性成長二氧化矽奈米線於電壓-電流曲線與場發射特性較優於大面積成長。
對於矽單晶奈米線束的製備則是使用無電鍍金屬沉積法,將其改良製程後並運用在太陽能電池的抗反射層、場發射及光致發光等實際應用上。
矽單晶奈米線束在抗反射層方面的應用,於不同長度的奈米線束樣品量測其效果。發現奈米線束長度越長,在可見光的範圍中的抗反射效率最佳可達5%以下,而矽奈米線束經過CF4及H2電漿後處理抗反射特性均會變差。
以無電鍍金屬沉積法所製備之矽奈米線束其光致發光特性較不如化學氣相沉積法來的好,主要原因乃是奈米線形貌容易群聚導致發光強度低。實驗中發現隨著奈米線束長度越長發光強度會逐漸提升;經過CF4電漿後處理於400sec時發光強度最為明顯,而H2電漿後處理則無太大的改變。
在場發射特性的量測中,我們發現奈米線束越長場發射的特性越好,雖然與奈米碳管相比仍是偏高,推測可能是因為奈米線束相互緊鄰,產生屏蔽效應(Screen effect),經由CF4電漿後處理400sec時可得到場發射最佳起始電場為14.2V/μm和β值645。


In this research, the silica nanowires (SiOx NWs) were synthesized on silicon substrate via a thin gold catalytic reaction by the thermal chemical vapor deposition system. The XeF excimer laser with different energy was adapted as the pretreatment and post-treatment technique for silica nanowires. The FE-SEM and FTIR and XPS were used for silica nanowires characteristic. Furthermore, It was observed that the I-V characteristic of patterned silica nanowires was improved.
To investigate the potential application for the bundles of silicon nanowires in solar cell anti-reflection, the anti-reflection properties for the bundles of silicon nanowires were studied with different length. The reflectance is lowest (<5%) in the visible region as the nanowires length increased. Regardless, the reflectance was increased after the CF4 and H2 plasma post-treatment.
The photoluminescence characteristic for the bundles of silicon nanowires by EMD process is inferior to those by the chemical vapor disposition (CVD) technique. The photoluminescence intensity for the bundles of silicon nanowires is low. The photoluminescence intensity was enhanced as the nanowires length increased. It was found that the photoluminescence intensity is strongest after the CF4 plasma post-treatment for 400 sec. However, there was no obvious variation for the H2 plasma post-treatment.
It was observed that turn-on field was approximately 14.6 V/μm for the bundles of silicon nanowires in the field emission measurement. The high turn-on field could be a result of screen effect due to the high density of nanowires getting to close to each other. After CF4 plasma post-treatment, it was found that the lowest turn-on field and highest β factor were 14.2 V/μm、645, respectively.

摘 要 Ⅰ ABSTRACT Ⅱ 誌 謝 Ⅲ 目 錄 Ⅳ 表 目 錄 Ⅶ 圖 目 錄 Ⅷ 第一章 緒論 1 第二章 文獻探討 3 2.1 奈米線合成與成長機制 3 2.1.1 氣相-液相-氣相 (Vapor-liquid-solid, VLS)成長機制 3 2.1.2 氣相-固相 ( Vapor-Solid, VS ) 成長機制 8 2.1.3 固態-液態-固態 (Solid-liquid-solid, SLS) 成長機制 9 2.1.4 液相-液相-固相(Liquid-Liquid-Solid,SLS) 11 2.1.5 固相-固相(Solid-Solid,SS) 13 2.1.6 利用無電鍍製備矽單晶奈米線 13 2.2 奈米線合成技術 15 2.2.1 雷射蒸鍍(Laser ablation)技術 15 2.2.2 熱蒸鍍 ( Thermal evaporation )成長技術 17 2.2.3 熱化學氣相沈積(Thermal chemical vapor deposition)成長技術 18 2.3 場發射理論 19 第三章 實驗設備與方法 22 3.1 實驗流程 22 3.2 二氧化矽奈米線之成長 23 3.2.1 基板之前處理流程 23 3.2.2 催化劑金薄膜之沉積 23 3.2.3 二氧化矽奈米線成長 24 3.3準分子雷射對於二氧化矽奈米線之後處理製程 25 3.4 利用無電鍍銀金屬蝕刻製備矽奈米線束 26 3.5 奈米線特性分析 27 3.5.1 場發射掃描式電子顯微鏡 (FE-SEM) 27 3.5.2 高解析場發射掃描穿透式電子顯微鏡 (TEM) 28 3.5.3傅利葉紅外線光譜儀 (FTIR) 28 3.5.4 拉曼光譜分析(Raman Spectroscopy) 29 3.5.5 光致發光螢光光譜儀 (PL) 31 3.5.6 紫外光-可見光光譜儀(UV-VIS) 33 3.5.7 高真空I-V量測系統 34 3.5.8 場發射量測之流程 34 結果與討論 第四章 二氧化矽奈米線 36 4.1 XeF準分子雷射後處理對於二氧化矽奈米線之影響 36 4.1.1 XeF準分子雷射對於二氧化矽奈米線表面形貌之分析 36 4.1.2 XeF準分子雷射後處理對於二氧化矽奈米線之富利葉轉換紅外線光譜分析 42 4.2 XeF準分子雷射前處理對於二氧化矽奈米線之影響 47 4.3 CF4電漿後處理對於二氧化矽奈米線之影響 50 4.3.1 CF4電漿後處理對於二氧化矽奈米線之表面形貌分析 50 4.3.2 富利葉轉換紅外線光譜之分析 53 4.3.3 X射線光電子能譜儀光譜之分析 57 4.4 二氧化矽奈米線之選擇性成長 59 4.4.1 選擇性成長圖案 59 4.4.2 I-V曲線量測 61 4.4.3 場發射量測 62 第五章 無電鍍金屬沉積製備矽單晶奈米線束 64 5.1 矽單晶奈米線束之製備與特性分析 64 5.1.1 以無電鍍法製備矽單晶奈米線束 64 5.1.2 矽單晶奈米線束基本特性分析 70 5.1.3 蝕刻長度對於矽奈米線束形貌之影響 73 5.1.4 蝕刻長度對於矽單晶奈米線束之場發射量測 76 5.1.5 蝕刻長度對於矽單晶奈米線束之光致發光量測 77 5.1.6 蝕刻長度對於矽單晶奈米線束之抗反射性量測 79 5.2 CF4電漿後處理對於矽單晶奈米線束之分析 80 5.2.1 CF4電漿後處理對於矽單晶奈米線束之表面形貌比較 80 5.2.2 CF4電漿後處理對於矽單晶奈米線束之拉曼光譜 85 5.2.3 CF4電漿後處理對於矽單晶奈米線束之X射線光電子能譜儀光譜 86 5.2.4 CF4電漿後處理對於對於矽單晶奈米線束之場發射量測 89 5.2.5 CF4電漿後處理對於矽單晶奈米線束之光致發光量測 90 5.2.6 CF4電漿後處理對於矽單晶奈米線束之抗反射性量測 91 5.3 H2電漿後處理對於矽單晶奈米線束之分析 92 5.3.1 H2電漿後處理對於矽單晶奈米線束之表面形貌比較 92 5.3.2 H2電漿後處理對於矽單晶奈米線束之拉曼光譜 95 5.3.3 H2電漿後處理對於矽單晶奈米線束之X射線光電子能譜儀光譜 96 5.3.4 H2電漿後處理對於矽單晶奈米線束之場發射量測 98 5.3.5 H2電漿後處理對於矽單晶奈米線束之光致發光量測 99 5.3.6 H2電漿後處理對於矽單晶奈米線束之抗反射性量測 100 第六章 以碳熱還原法製備碳化矽奈米線 102 6.1 碳化矽奈米線之成長與表面形貌 102 6.2 富利葉轉換紅外線光譜分析 103 6.3 拉曼光譜之分析 105 6.4 穿透式電子顯微鏡之分析 106 第七章 結論與未來展望 113 參考文獻 115

[1] 馮榮豐,陳錫添,奈米工程概論,全華科技圖書股份有限公司,台北,第1-10頁 (2004).
[2] WTEC panel report on “ Nanostructure science and technology” , International
Technology Research Institute, Maryland, USA. (1998).
[3] Saito, R., Fujita et al, “ Electronic structure ofchiralgraphene tubules” , Appl.
Phys. Lett. 60, 2204-2206 (1992).
[4] N. Hamada, S. Sawada, A. Oshiyama, “New One-dimensional Conductors:
Graphitic Microtubules” , Phys. Rev. Lett.68, 1581-1579 (1992).
[5] S. Iijima, “Helical microtubules of graphitic carbon” , Nature 354, 56-58 (1991).
[6] Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, “Ordered Semiconductor ZnO Nanowire Arrays and Their Photoluminescence Properties” , Appl. Phys. Lett. 76, 2011-2013 (2000).
[7] Jun Chen, Chi-sun Poon, “Photocatalytic construction and building materials: From fundamentals to Applications” , Building and Environment 44, 1899–1906 (2009).
[8]Lijun Li, Fujian Zong , Xiaodong Cui, “Structure and field emission properties of SnO2 nanowires” , Materials Letters 61, 4152–4155 (2007).
[9]郭奕成,“碳化鎢(WCX)與氧化鎢(WO3-X)奈米線之製備及特性研究與感測器
結構之應用設計”, 碩士論文, 國立成功大學微電子工程研究所,台南 (2006)。
[10] J.T. Chen, F. Zhang, ” CuO nanowires synthesized by thermal oxidation route” ,
Journal of Alloys and Compounds 454, 268–273 (2008).
[11] R.S. Wagner and W.C. Ellis, Vapor-Liquid-Solid Mechanism of Single crystal growth , Appl. Phys. Lett., 4, 89-90 (1964).
[12] Y. Wu and P. Yang, “Synthesis and photoluminescence properties of amorphous SiOx nanowires” , J. Am. Chem. Soc., 123, 3165-3166 (2001).
[13] Y.W. Wang, C.H. Liang, G.W. Meng, X.S. Peng, and L.D. Zhang, “Synthesis and photoluminescence properties of amorphous SiOx nanowires” , J. Mater. Chem., 12, 651-653 (2002).
[14] D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, and S. Q. Feng, Appl. Phys. Lett., 73, 3076-3078 (1998).
[15] H.F. Zhang, C.M. Wang, E.C. Buck, and L.S. Wang, “Synthesis, characterization, and manipulation of helical SiO2 nanosprings” , Nano Lett., 3, 577-580 (2003).
[16] X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, and J.J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires” , Chem. Phys. Lett.,336 , 53-56 (2001).

[17] Y.J. Chen, J.B. Li, Y.S. Han, Q.M. Wei, and J.H. Dai, “A novel morphology of SiOx nanowires with a modified diameter” , Appl. Phys. A, 74, 433-435 (2002).
[18] J.C. Wang, C.Z. Zhan, and F.G. Li, “The synthesis of silica nanowire arrays” , Solid State Commun., 125, 629-631 (2003).
[19] Z.W. Pan, Z.R. Dai, C. Ma, and Z.L. Wang, “Nanobelts of semiconducting oxides” , J. Am. Chem. Soc.,124 ,1817-1822 (2002).
[20] S.H. Sun, G.W. Meng, M.G. Zhang, Y.T. Tian, T. Xie, and L.D. Zhang, “Preparation and characterization of oriented silica nanowires” , Solid State Commun., 128, 287-290 (2003).
[21] J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi, and D. Golberg, “Single-catalyst-confined growth of ZnS/Si composite nanowires” , Adv. Mater., 17, 971-975 (2005).
[22] Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, “A simple method to synthesis Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture” , J. Cryst. Growth, 233, 803-808 (2001).
[23] L. Dai, X.L. Chen, T. Zhou, and B.Q. Hu, “Aligned silica nanofibres” , J. Phys.: Condens. Matter 14, L473-477 (2002).
[24] L. Dai, X.L. Chen, J.K. Jian, W.J. Wang, T. Zhou, and B.Q. Hu, “rapid communication: Strong blue photoluminescence from aligned silica nanofibers” , Appl. Phys. A ,76, 625-627 (2003).
[25] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi, and S.Q.
Feng, “Growth of Amorphous Silicon Nanowires via a Solid–Liquid– Solid Mechanism” , Chem. Phys. Lett.,323 , 224-228 (2000).
[26] Y.J. Xing, Z.H. Xi, Z.Q. Xue, and D.P. Yu, “Diameter modification of Si nanowires via catalyst size” , Chin. Phys. Lett., 20, 700-702 (2003).
[27] Y.J. Xing, Z.H. Xi, D.P. Yu, Q.L. Hang, H.F. Yan, S.Q. Feng, and Z.Q. Xue, “Growth of silicon nanowires by heating Si substrate” , Chin. Phys. Lett.,19 , 240-242 (2002).
[28] S.H. Sun, G.W. Meng, T. Gao, M.G. Zhang, Y.T. Tian, X.S. Peng, Y.X. Jin, and
L.D. Zhang, Micrometer-sized Si-Sn-O novel structures with SiONWs on their surfaces , Appl. Phys. A, 76, 999-1002 (2003).
[29] B.T. Park and K. Yong, “Controlled growth of core–shell Si–SiOx and amorphous SiO2 nanowires directly from NiO/Si” , Nanotechnology,15 , S365-S370 (2004).
[30] M. Paulose, O.K. Varghese, and C.A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth” , J. Nanosci. Nanotech.,3 , 341-346 (2003).
[31] T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E.
Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth” , Science, 270, 1791-1794 (1995).
[32] X. Lu, T. Hanrath, K.P. Johnston, and A.B. Korgel, ”Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate” , Nano Lett., 3, 93-99 (2003).
[33] K.H. Lee, H.S. Yang, K.H. Baik, J. Bang, R.R. Vanfleet, and W. Sigmund, “Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films” , Chem.Phys. Lett., 383, 380-384 (2004).
[34] H. Hamamura, H. Itoh, Y. Shimogaki, J. Aoyama, T. Yoshimi, J. Ueda, and H.
Komiyama, “Structural change of TiN/Ti/SiO2 multilayers by N2 annealing” , Thin Solid Films,320 ,31-34 (1998).
[35] K. Peng, Y. J. Yan, S. P. Gao, J. Zhu, “Synthesis of Large Area Silicon Nanowire Arrays via Self-Assembling Naonelectrochemistry” , Adv. Mater. 14, 1164 (2002).
[36] K. Peng, Y. J. Yan, S. P. Gao, J. Zhu, “Dendrite Assited Growth of Silicon Nanowires in Electroless Metal Deposition” , Adv. Funct. Mater. 13, 127 (2003).
[37] K. Peng, J. Zhu, “Simultaneous gold deposition and formation of silicon nanowire arrays” , Journal of Electroanalytical Chemistry 558, 35-39(2003).
[38] K. Peng, J. Zhu, “Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution” , Electrochimica Acta 49, 2563-2568 (2004).
[39] K. Peng, Z. Huang, J. Zhu, “Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays” , Adv. Mater. 16, 73-76 (2004).
[40] K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, “Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays” , J. Zhu, Angew. Chem.Int. Ed. 44, 2737-2742 (2005).
[41] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications” , SMALL 1, 1062-1067 (2005).
[42] K. Peng, J. J. Hu, Y. J. Yan, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T.Lee, J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles” ,Adv. Funct. Mater. 16, 387-394 (2006).
[43] T. Qiu, X. L. Wu, X. Yang, G. S. Huang, Z. Y. Zhang, “Self-assembled growth and optical emission of silver-capped silicon nanowires” , Appl. Phys.Lett. 84, 3867-3869 (2004).
[44] T. Qiu, X. L. Wu, Y. F. Mei, G. J. Wan, P. K. Chu, G. G. Siu, “From Si nanotubes to nanowires: Synthesis, characterization, and self-assembly” , Journal of crystal growth 277, 143-148 (2005).
[45] T. Qiu, X. L. Wu, “Self-assembled growth and enhanced blue emission of SiOxNy-capped silicon nanowire arrays” , Appl. Phys. Lett. 86, 193111193111-3 (2005).
[46] A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires” , Science, 279, 208-211 (1998).
[47] J. L. Gole, J. D. Stout, W. L. Rauch, Z. L. Wang, “Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates” , Appl. Phys. Lett., 76, 2346-2348 (2000).
[48] J. L. Gole, J. D. Stout, W. L. Rauch, Z. L. Wang, “Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates” , Appl. Phys. Lett., 76, 2346-2348 (2000).
[49] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, H. Ruda, “Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction” , J. Vac. Sci. Technol. B,
15, 554-557 (1997).
[50] J. Weatwater, D. P. Gosain, S. Usui, Phys. Stat. Sol., 16, 537 (1998).
[51] J. Niu, J. Sha, N. Zhang, Y. Ji, X. Ma, and D. Yang, “Tracing the Chemical Oxidation Process of Single-walled Carbon Nanotubes by Silver Nanoparticles” , Physica E, 23, 1-4 (2004).
[52] J.R. Martı´nez, F. Ruiz, Y. V. Vorobiev, F. Pe´rez-Robles, and J.Gonza´lez
-Herna´ndez, “Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel” , J. Chem. Phys. 109, 7511-7514 (1998).
[53] Quanli Hu , Hiroshi Suzuki, Hong Gao, Hiroshi Araki, Wen Yang, Tetsuji Noda, “High-frequency FTIR absorption of SiO2/Si nanowires” , Chem. Phys. Lett., 378, 299 (2003).
[54] 張瀚承,「在HF水溶液中氧化劑和溫度對矽奈米線形成速率及微結構之影響」,碩士論文,國立成功大學,台南 (2008)。
[55] 李浩池,「製備大面積矽單晶及 鎳矽化物奈米線陣列之研究」,碩士論文,
國立中央大學,桃園,(2006)。
[56] Ramin Yousefi, Burhanuddin Kamaluddin, “Dependence of photoluminescence peaks and ZnO nanowires diameter grown on silicon substrates at different temperatures and orientations, Journal of Alloys and Compounds” , 479 L11–L14 (2009).
[57] P.G. Li, X. Wang,W.H. Tang, “Facile synthesis of well-aligned ZnO nanowire arrays and their photoluminescence properties” , Journal of Alloys and Compounds 476, 744–748 (2009).
[58] Rui Zhang, Peng-Gang Yin, Ning Wang, Lin Guo, ”Photoluminescence and Raman scattering of ZnO nanorods” ,Solid State Sciences 11, 865–869 (2009).
[59] F. Güell, J.O. Ossó, A.R. Goñic, A. Cornet, “Synthesis and optical spectroscopy of ZnO nanowires” , Superlattices and Microstructures 45, 271-276 (2009).
[60] P.G. Li,W.H. Tang, X. Wang, “Synthesis of ZnO nanowire arrays and their photoluminescence property” , Journal of Alloys and Compounds 479, 634–637 (2009).
[61] M. Naddaf, H. Hamadeh, “Visible luminescence in photo-electrochemically etched p-type porous silicon: Effect of illumination wavelength” , Materials Science and Engineering C xxx, xxx–xxx (2009).
[62] S. Gardelis, “Enhancement and red shift of photoluminescence of fresh porous Si
under prolonged laser irradiation or ageing: Role of surface vibration modes” ,
Physica E 41, 986–989 (2009).
[63] M. Balarin, O. Gamulin, M. Ivanda, M. Kosovic, “Structural, optical and electrical characterization of porous silicon prepared on thin silicon epitaxial layer” , Journal of Molecular Structure 924–926, 285–290 (2009).
[64] Mei Lu, Meng-Ke Li, Ling-Bing Kong, “Synthesis and characterization of well-aligned quantum silicon nanowires arrays” , Composites: Part B engineering 35, 179–184 (2004).
[65] Changfeng Wu, Weiping Qin, Guanshi Qin, “Spontaneous growth and luminescence of Si/SiOx core-shell nanowires” , Chemical Physics Letters 378, 368–373 (2003).
[66] 陳品孜、吳俊霖、陳泓任、林樹均,「以錫做為催化劑來製備SiOX 及Si 奈米線及其性質量測」,中華民國第39屆材料年會 (2008)。
[67] Y. Xiong, X.L. Wub, S.J. Xiong, Z.Y. Zhang, “Origin of the 745 nm photoluminescence from small diameter silicon nanowires” , Solid State Communications 148, 182–185 (2008).
[68] H. Nishikawa and T. Shiroyama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation” , Phys. Rev. B, 45, 586-91 (1992).
[69] L. Skuja, “Optically active oxygen-derciency-related centers in amorphous silicon dioxide” , J. Non-Cryst. Solids, 239, 16-48 (1998).
[70] D. M. Lyons and K. M. Ryan, “Tailoring the optical properties of silicon nanowire arrays through strain” , Nano Lett., 2, 811-816 (2002).
[71] 陳士偉,「無電鍍蝕刻製備準直矽奈米線在表面增強拉曼散射、場發射顯示及太場能電池製程方面的應用」,碩士論文,國立海洋大學,基隆 (2006)。
[72] 許文義,「以金屬蝕刻製備單晶矽奈米線及場發射特性研究」,碩士論文,國立成功大學,台南 (2008)。
[73] R. Knizikevicius, “Simulation of Si and SiO2 etching in CF4 plasma” , Vacuum 82, 1191–1193 (2008).
[74] 彭展崢,「使用濺鍍法成長系奈米線結構」,碩士論文,國立台灣科技大學,台北 (2007)。
[75] Woo-Yong Sung, Wal-Jun Kim, “Field emission characteristics of CuO nanowires by hydrogen plasma treatment” , Vacuum 81, 851–856 (2007).
[76] Z.J. LI, H.J. LI, X.L. CHEN, A.L. MENG, ” Large-scale synthesis of crystalline β-SiC nanowires” , Appl. Phys. A 76, 637–640 (2003).
[77] G.W. Meng, L.D. Zhang, Y. Qin, C.M. Mo, F. Phillipp, “Sybthesis of β-SiC nanowires with SiO2 wrappers” , NanoStructured Materials, Vol. 12, pp 1003-1006, 1999.
[78] S. Rizk, M. B. Assouar, M. Belmahi, L. Le Brizoual, and J. Bougdira, “Synthesis of SiC nanofibers by microwave plasma assisted chemical vapour deposition in CH4/H2 gas mixture” , phys. stat. sol. (a) 204, No. 9, 3085–3090 (2007).
[79] B.-C. Kang, S.-B. Lee, J.-H. Boo, “Growth of β-SiC nanowires on Si (100) substrates by MOCVD using nickel as a catalyst” , Thin Solid Films 464–465, 215– 219 (2004).
[80] Sheng-Cheng Chiu, Yuan-Yao Li, “SiC nanowires in large quantities: Synthesis, band gap characterization” , and photoluminescence properties , Journal of Crystal Growth (2008).
[81] Yunho Baek, YongHwan Ryu, Kijung Yong, “Structural characterization of β-SiC nanowires synthesized by direct heating method” , Materials Science and Engineering C 26, 805 – 808 (2006).
[82] YongHwan Ryua, ByoungTae Parka, YoonHo Songb, Kijung Yonga, “Carbon-coated SiC nanowires: direct synthesis from Si and field emission characteristics” , Journal of Crystal Growth 271, 99–104 (2004).
[83] Byoung Tae Park, Kijung Yong, “Controlled growth of core–shell Si–SiOx
and amorphous SiO2 nanowires directly from NiO/Si” , Nanotechnology 15, S365–S370 (2004).
[84] Karuppanan Senthil,, Kijung Yong, “Enhanced field emission from density-controlled SiC nanowires” , Materials Chemistry and Physics 112, 88–93 (2008).
[85] G.W. Meng, Z. Cui, L.D. Zhang, F. Phillipp, “Growth and characterization of nanostructured β-SiC via carbothermal reduction of SiO2 xerogels containing
carbon nanoparticles” , Journal of Crystal Growth 209, 801-806 (2000).
[86] GUO-QIANG JIN, PING LIANG, XIANG-YUN GUO, “Novel method for synthesis of silicon carbide nanowires” , Journal of Material Science Letters 22, 767– 770 (2003).
[87] RenbingWu, Baosheng Li, “Tuning the morphologies of SiC nanowires via the control of growth temperature, and their photoluminescence properties ” , Nanotechnology 19, 335602-335610 (2008).
[88] HyunWoo Shim and Hanchen Huang, “Nanowebs and nanocables of silicon carbide” , Nanotechnology 18, 335607-335612 (2007).
[89] Enlei Zhang, Yuanhong Tang, Yong Zhang, “Synthesis and photoluminescence property of siliconcarbon nanowires synthesized by thermal evaporation method” , Chi Guo, Physica E (2008).
[90] By Mikhael Bechelany, Arnaud Brioude,* David Cornu, Gabriel Ferro, Philippe Miele, “A Raman Spectroscopy Study of Individual SiC Nanowires” , Adv. Funct. Mater 17, 939-943 (2007).
[91] D.F. Liu, S.S. Xie, X.Q. Yan, “A simple large-scale synthesis of coaxial nanocables: silicon carbide sheathed with silicon oxide” , Chemical Physics Letters 375, 269–272 (2003).
[92] J.C. Li, C.S. Lee, S.T. Lee, “Direct growth ofβ-SiC nanowires from SiOx thin
films deposited on Si (100) substrate” , Chemical Physics Letters 355, 147–150 (2002).
[93] S. Z. Deng, Z. B. Li, W. L. Wang, N. S. Xu, “Field emission study of SiC nanowires/nanorods directly grown on SiC ceramic substrate” , Applied Physics Letters 89, 023118-023121 (2006).
[94] Guangyi Yang, Renbing Wu, Jianjun Chen, “Growth of SiC nanowires/nanorods using a Fe–Si solution method” , Nanotechnology 18, 155601-155606 (2007).
[95] Jian Wei, Kezhi Li , Hejun Li, Dangshe Hou, Yulei Zhang, Chuang Wang, “Large-scale synthesis and photoluminescence properties of hexagonal-shaped SiC nanowires” , Journal of Alloys and Compounds 462, 271–274 (2008).
[96] Z. S. Wu, S. Z. Deng, N. S. Xu, “Needle-shaped silicon carbide nanowires: Synthesis and field electron emission properties” , Applied Physics Letters 80, NUMBER 20, 3829-3831 (2002).
[97] Ke-Zhi Li ∗, Jian Wei, He-Jun Li, Zheng-Jia Li, “Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol–gel process” , Materials Science and Engineering A 460–461, 233–237 (2007).
[98] A.I. Diaz Canoa, T.V. Torchynskaa, J.E. Urbina-Alvarez, Microelectronics, “Porous SiC layers on Si nanowire surface ” , Journal 39, 507–511 (2008).
[99] MA Jian-Ping, “Raman Analysis of a Crystalline SiC Sample Prepared from Carbon-Saturated Melt of Silicon” , Chin.Phys.Lett.Vol.18, No.8 (2001).
[100] Weimin Zhou, Xuan Liu, and Yafei Zhang, “Simple approach to β-SiC nanowires: Synthesis, optical, and electrical Properties” , Applied Physics Letters 89, 223124 (2006).
[101] Alan Menga, Zhenjiang Lia, Jinli Zhanga, Li Gaoa, Hejun Lib, “Synthesis and Raman scattering of β-SiC/SiO2 core–shell nanowires” , Journal of Crystal Growth 308, 263–268 (2007).

QR CODE