簡易檢索 / 詳目顯示

研究生: 巫昆晉
Kun-jin Wu
論文名稱: 使用超音波馬達研製微銑削工具機之精密定位研究
Research on the Precision Positioning of a Micro- Milling Machine using the Ultrasonic Motors
指導教授: 修芳仲
Fang-jung Shiou
口試委員: 黃緒哲
Shiuh-jer Huang
張復瑜
Fuh-yu Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 111
中文關鍵詞: 超音波馬達精密定位平台微型工具機
外文關鍵詞: ultrasonic motor, precision positioning stage, micro-milling machine
相關次數: 點閱:210下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的為使用低成本之組件搭配以超音波馬達為致動器,開發具有精密定位功能之微奈米定位平台,降低因組合長短行程平台所帶來的複雜性及誤差。
本研究為延續台大實驗室所開發之共平面平台作為整個系統的基礎,搭配高精度雷射繞射式光學尺(LDGI)進行位移迴授控制,目前已完成雙軸閉迴路精密定位平台,並可進行循圓測試,半徑100 μm,其真圓度誤差為4.01 μm。Z軸部分本研究亦探討微工具機之振動誤差,並擬定以雙超音波馬達推動加工主軸,藉此互相抵消平台的側向力以及增加主軸的推力,確保加工時的穩定性。本研究亦進行新型控制器(ELC 2200)之開迴路定位誤差測試,以每步距0.1 μm驅動,誤差值均小於0.068 μm。未來將利用精密定位平台及Z軸架構,搭配CNC控制器開發新的系統,完成一具有高精度之微型工具機。


The objective of this research is to develop an X-Y positioning stage with nanometer resolution using the low-cost components and ultrasonic motors, and to reduce the complexity and error resulted from the combination of a long-stroke stage and short-travel stage.
The co-planar stage developed by National Taiwan University was integrated with two Laser Diffraction Grating Interferometer systems (LDGI) as displacement feedback sensors, so that a two-axis closed-loop control was possible. A circular positioning test with the radius of 100 um using the developed stage was tested, and the overall roundness error was about 4.01 um based on the test results. The vibration amplitude tests of the Z-axis of a micro-milling machine driven by either an ultrasonic motor or two ultrasonic motors has also been investigated, to provide a better design information of the Z-axis.
The open-looped positioning error test of the stage, driven by a new controller (ELC 2200), has also been tested. For a positioning of 1 um, the deviations were smaller than 0.068 um using the step positioning of 0.1 um. The test results, regarding the X-Y positioning stage and the vibration amplitude tests of the Z-axis, will be applied to the design of a micro-milling machine in the future.

中文摘要 I Abstract II 誌 謝 III 目 錄 IV 圖索引 VII 表索引 XII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 4 1.3 研究方法與論文結構 13 第二章 系統架構與實驗設備介紹 14 2.1 系統架構 15 2.2 超音波馬達之工作原理與驅動方式 17 2.2.1 壓電效應原理 17 2.2.2 壓電伸縮微定位平台 20 2.3 超音波馬達介紹 21 2.3.1 Nanomotion超音波馬達 23 2.4 超音波馬達HR4、HR8之原理介紹 26 2.5 驅動器AB2 Driver介紹 31 2.5.1 AB2 Driver介紹 31 2.5.2 AB2 Driver驅動模式說明 33 2.6 雷射繞射式干涉儀(LDGI) 35 2.6.1 LDGI原理介紹 36 2.7 FPGA訊號傳輸 38 2.8 SIOS雷射干涉儀 40 2.9 ELC 2200控制器 41 第三章 控制理論 44 3.1 類神經網路理論 44 3.1.1 類神經網路架構 49 3.1.2 倒傳遞類神經網路架構 50 3.2 PID控制器 54 3.2.1 PID 控制器的作用 55 3.2.2 數位PID控制 57 3.3 倒傳遞類神經PID控制 58 第四章 實驗方法與定位控制設定 61 4.1 Z軸高頻振動測試 61 4.2 雙軸共平面定位平台定位控制設定 64 4.3 ELC 2200控制器驅動模式測試 67 第五章 實驗結果 68 5.1 Z軸振動實驗 68 5.1.1單一超音波馬達與雙超音波馬達測試 68 5.1.2雙超音波馬達於Z軸實驗平台測試 69 5.2 雙軸共平面定位平台控制結果 72 5.2.1 LDGI定位精度測試 72 5.2.2雙軸定位平台速度測試結果 74 5.2.3雙軸定位平台Gate mode測試結果 79 5.2.4雙軸定位平台DC mode測試結果 85 5.2.5循圓軌跡測試 86 5.3 ELC 2200控制裝置驅動測試結果 87 第六章 結論與未來研究方向 90 6.1 結論 90 6.1 未來研究方向 90 參考文獻 91 作 者 簡 介 96

【1】 Ohnishi, O. Myohga, T. Uchikawa, M. Tamegai, and T. Inoue, “Piezoelectric ultrasonic motor using longitudinal-torsional composite resonance vibration,” IEEE Trans. Ultrasonics, Ferroelectrics, Freq. Contr., Vol. 40, No. 6, pp. 687-693, 1993.
【2】 M. Umeda, T. Nakazawa, and K. Ohnishi, “Positioning characteristic of ultrasonic rotary actuator with two mode operation,” Ultrasonics Symposium Proceedings, Vol. 3, pp. 1201-1204, 1990.
【3】 H. Hirata, and S. Ueha, “Characteristics estimation of a traveling wave type ultrasonic motor,” IEEE Trans. Ultrasonics, Ferroelectrics., Freq. Contr., Vol. 40, No. 4, pp. 402-406, 1993.
【4】 H. Jonathon Mamin, David W. Abraham, Eric Ganz, and John Clarke, “Two-dimensional, remote micropositioner for a scanning tunneling microscope,” Rev. Sci. Instrum., Vol. 56, No. 11, pp. 2168-2170, 1985.
【5】 J. R. Matey, R. S. Crandall, and B. Brycki, “Bimorph-driven x-y-z translation stage for scanned image microscopy,” Rev. Sci. Instrum., Vol. 58, No. 4, pp. 567-570, 1987.
【6】 Ch. Renner, Ph. Niedermann, A.D. Kent, and ø. Fischer, “A vertical piezoelectric inertial slider,” Rev. Sci. Instrum., Vol. 61, No. 3, pp. 965-967, 1990.
【7】 A. Kanai, H. Sano, J, Yoshioka, and M. Miyashita, “Positioning of a 200Kg Carriage on Plain Bearing Guideways to Nanometer Accuracy with a Force-operated Linear Actuator,” Nanotechnology, Vol. 2, pp. 43-51, 1991.
【8】 Wanjun Wang, and llene Busch-Vishniac, “A high precision micropositioner based on magnetostriction principle,” Rev. Sci. Instrum., Vol. 63, No. 1, pp. 249-254, 1992.
【9】 J. Heil, A. Bohm, M. Primke, and P. Wyter, “Versatile Three-Dimensional Cryogenic Micropositioning Device,” Rev. Sci. Instrum. , Vol.67, No. 1, 1996.
【10】 Robert Curtis, Chris Pearson, Peter Gaard, and Eric Ganz, “A compact Micropositioner for Use in Ultrahigh Vacuum,” Rev. Sci. Instrum., Vol. 64, No. 9,pp. 2687-2690, 1993.
【11】 S. H. Chang, and S. S. Li, “A High Resolution Long Travel Friction Drive Micropositioner with Programmable Step Size,” Rev. Sci. Instrum., Vol. 70, No. 6, pp. 950-960, 1999.
【12】 Peng Gao, Hong Tan and Zhejun Yuan, “The design and characterization of a piezo-driven ultra-precision stepping positioner,” Meas. Sci. Technol., Vol. 11,No. 2, N15-N19, Feb., 2000.
【13】 Pierre Cusin, Takuhiko Sawai, and Satoshi Konishi, “Compact and precise positioner based on the Inchworm principle,” J. Micromech. Microeng. 10 (2000) pp. 516-521, 2000.
【14】 S. H. Chang, and B. C. Du, “A Precision Piezodriven Micropositioner Mechanism with Large Travel Range,” Rev. Sci. Instrum., Vol. 69, No.4, pp. 1785-1791, 1998.
【15】 魏榮宗,“超音波馬達之驅動與智慧型控制”,中原大學電子工程學研究所博士論文,1998.
【16】 許安仁,“自調式類神經PID控制於超音波馬達之應用”,國立中央大學機械工程研究所碩士論文,1999.
【17】 杜孟奇,“應用RBF類神經網路於超音波馬達之位置控制”,國立中央大學機械工程研究所碩士論文,2000.
【18】 沈孟樵,“線性超音波馬達共振驅動電路與智慧型控制”,中原大學電機工程研究所碩士論文,2001.
【19】 賴子發,“超音波馬達智慧型奈米定位控制系統之研究”,國立台灣大學機械工程研究所碩士論文,2006.
【20】 孫世豪,“超音波馬達於共平面平台之定位研究”,國立台灣大
學機械工程研究所碩士論文,2008.
【21】 王文瑞,“微型工具機技術探討”,機械工業雜誌,276期,2006年3月。
【22】 PMC財團法人精密機械研究發展中心,“微型加工設備介紹”,
技術通報,163期,2007年10月。

【23】 J. S. Wang, Y. D. Gong, G. Abba, K. Chen, J. S. Shi, G. Q.
Cai, “Surface generation analysis in micro end-milling considering the influences of grain,” Microsyst Technol, 14, pp. 937–942, 2008.
【24】 Sinan Filiz, Caroline M. Conley, Matthew B. Wasserman, O. Burak Ozdoganlar, “An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills,” International Journal of Machine Tools & Manufacture, 47, pp. 1088-1100, 2007.
【25】 Rusnaldy, Tae Jo Ko, Hee Sool Kim, “An experimental study on microcutting of silicon using a micromilling machine,” Int J Adv Manuf Technol, 39, pp. 85-91, 2008.
【26】 http://www.eng.ntu.edu.tw/eng/action/040106/040106.htm
【27】 PMC財團法人精密機械研究發展中心,“微型加工設備介紹”,技術通報,163期,2007年10月。
【28】 http://www.mt.ntnu.edu.tw/teacherinfo/teacherinfo.php?id=ntnumt16
【29】 吳朗,“電子陶瓷: 壓電”,全欣科技圖書,pp.1-78,1994.
【30】 朱志良,“奈米級三次元量測儀之研製”,國立台灣大學機械工程研究所博士論文,2002.
【31】 許溢适,“超音波馬達基礎”,文笙書局,1993.
【32】 http://www.nanomotion.com/index.asp, Nanomotion AB2 Driver User Manual
【33】 簡揚昌,“壓電長行程定位平台驅動控制器之研製”,國立台灣大學機械工程研究所碩士論文,2003.
【34】 李佰堃,“簡易型高對位公差之雷射繞射式光學尺之研製”, 國立台灣大學機械工程研究所碩士論文,2007.
【35】 Rumelhart, D. E., Hinton, G. E. and Williams, R. J. “Learning
internal representation by error propagation,” Parallel Distributed Processing, Vol. 1, pp. 318-362, 1986.
【36】 Omatu, S. and Yoshioka, M. “Self-tuning neuro-PID control
and applications,” IEEE International Conference on Systems, Man, and Cybernetics Computational Cybernetics and Simulation, Vol. 3,pp. 1985-1989,1997.
【37】 王進德,“類神經網路與模糊控制理論-入門與應用”,全華書局,2008.
【38】 劉奇惠,“以可程式邏輯運算晶片發展雷射光學尺訊號解析系統”,國立台灣大學機械工程研究所碩士論文,2008.

QR CODE