簡易檢索 / 詳目顯示

研究生: 鄭偉強
John Thedy
論文名稱: 基於多圓重點取樣與人工智慧之結構系統可靠度分析與最佳化設計
Reliability-based Design Optimization of Structural Systems Using Multisphere Importance Sampling and Artificial Intelligence.
指導教授: 陳瑞華
Rwey-Hua Cherng
口試委員: 廖國偉
kliao@ntu.edu.tw
楊亦東
ityang@mail.ntust.edu.tw
卿建業
jyching@ntu.edu.tw
詹魁元
chanky@ntu.edu.tw
黃尹男
ynhuang@ntu.edu.tw
林柏廷
potinglin@mail.ntust.edu.tw
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 144
中文關鍵詞: 重要性抽樣蒙特卡羅模擬結構可靠性多球體RBDO
外文關鍵詞: Importance Sampling, Monte Carlo Simulation, Structural Reliability, Multisphere, RBDO
相關次數: 點閱:190下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 建立了稱為 M-IS(多球體重要性採樣)的 RBIS(基於徑向的重要性採樣)的創新版本。 RBIS 最初是一種基於仿真的可靠性方法,它創建單個球體以排除球體內的採樣域。利用相同的概念,M-IS 產生多個球體而不是單個球體,以進一步排除更多的採樣域。在確定球體位置和半徑時,M-IS 採用自適應框架,確保部署的球體位於安全區域內,並準確地鄰接球體和失效函數面。本研究還介紹了 M-IS 在 RBDO(基於可靠性的設計優化)中的實施。本研究執行雙循環優化,其中元啟發式算法和 M-IS 分別用作外循環和內循環。為了在優化過程中提高效率,採用人工智能(AI)來代替失效函數。在上一次迭代的球體確定過程中,將使用評估樣本饋送內置 AI。在 M-IS 框架中,每個可靠性分析的每個部署球體都需要對部分樣本進行功能評估。有趣的是,這些樣本中的大多數都位於臨界失效表面附近。提議的 RBDO 利用先前 RBDO 迭代期間每個可靠性分析的評估樣本作為 AI 的訓練數據。與其他最近的基於仿真的可靠性方法相比,擬議的 M-IS 顯示出更好的準確性和效率。本論文中演示的 RBDO 程序也顯示出令人滿意的結果,在不犧牲過高的精度的情況下,使用低計算成本解決了幾個結構工程問題。


    An innovative version of RBIS (Radial Based Importance Sampling) termed as M-IS (Multisphere Importance Sampling) is established. Originally, RBIS is a simulation based reliability method that create single sphere to exclude sampling domain inside sphere. Utilizing same concept, M-IS produces multiple spheres instead of only single sphere to further exclude more sampling domain. In determining spheres locations and radii, M-IS employ adaptive framework that ensure deployed spheres located inside safety region and accurately adjoining sphere and failure function surfaces. Implementation of M-IS in RBDO (Reliability Based Design Optimization) also presented in this study. This study performs a double-loop optimization in which metaheuristic algorithm and M-IS are used as outer and inner loop respectively. To increase efficiency during optimization, Artificial Intelligence (AI) is adopted to replace failure function. Built AI will be fed using evaluated samples during sphere determination on previous iteration. In M-IS framework, portion of samples are required to be function evaluated for every deployed sphere per reliability analysis. Interestingly, most of those samples are located around the critical failure surface. Proposed RBDO utilizes those evaluated samples from every reliability analysis during previous RBDO iteration to be a training data for AI. Proposed M-IS shows better accuracy and efficiency compared to other recent simulation-based reliability method. Demonstrated RBDO procedure in this dissertation also shows a satisfactory result in solving several structural engineering problems using low computation cost without sacrificing excessive accuracy.

    TABLE OF CONTENTS ABSTRACT i ACKNOWLEDGEMENT ii TABLE OF CONTENTS iii LIST OF TABLES vi LIST OF FIGURES viii NOTATION xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Objective 4 1.3 Research Scope and Limitation 6 1.4 Research Outline 7 Chapter 2 Literature Review 9 2.1 Reliability Analysis 9 2.2 Metaheuristic Optimization 16 2.3 Machine Learning 21 2.3.1 LSSVM (Least Square Support Vector Machine) 22 2.3.2 NN (Neural Network) 27 2.4 RBDO (Reliability Based Design Optimization) 30 2.4.1 Coupled Approach 30 2.4.2 Decoupled Approach 31 Chapter 3 The Main Frame of the Proposed Method 33 3.1 Multisphere-based Importance Sampling 33 3.1.1 The “Origin Sphere” 36 3.1.2 The Additional Samples 40 3.1.3 The “Non-Origin Spheres” 42 3.1.4 Line Search Method 48 3.2 RBDO 49 Chapter 4 Numerical Examples 53 4.1 Reliability Analysis Result 53 4.2 RBDO Result 65 4.2.1 Case 1 (Cantilever Stress Limit State Design) 66 4.2.2 Case 2 (Cantilever Displacement Limit State Design) 76 4.2.3 Case 3 (Normal - Short Column Design) 80 4.2.4 Case 4 (Non Normal - Short Column Design) 84 4.2.5 Case 5 (Ten Bar Truss) 86 4.2.6 Case6 (Active Control Structure) 89 Chapter 5 Conclusion 97 5.1 Reliability Assessment 97 5.2 RBDO 98 References 100 Appendix A 107 Appendix A1: Sphere Construction of Each Reliability Benchmark Problem. 107 Appendix A2: The Deterministic Model Used in Case 6 120 Appendix A2: Pole Placement 121 Appendix A3: Kalman Filter 123

    [1] Ang AH-S, Tang WH. Probability concepts in engineering planning and design Vol. 1, Vol. 1. New York; London: Wiley; 1975.
    [2] Zhao Y-G, Ono T. A general procedure for first/second-order reliability method (FORM/SORM). Structural Safety. 1999;21:95-112.
    [3] Ching J, Phoon K-K. Quantile value method versus design value method for calibration of reliability-based geotechnical codes. Structural Safety. 2013;44:47-58.
    [4] Der Kiureghian A, Lin HZ, Hwang SJ. Second‐Order Reliability Approximations. Journal of Engineering Mechanics. 1987;113:1208-25.
    [5] Zhao Y-G, Lu Z-H. Applicable Range of the Fourth-Moment Method for Structural Reliability. Journal of Asian Architecture and Building Engineering. 2007;6:151-8.
    [6] Liao K-W, Biton NIDR. A heuristic optimization considering probabilistic constraints via an equivalent single variable Pearson distribution system. Applied Soft Computing. 2019;78:670-84.
    [7] Rubinstein RY. Simulation and the Monte Carlo Method: John Wiley & Sons, Inc.; 1981.
    [8] Olsson A, Sandberg G, Dahlblom O. On Latin hypercube sampling for structural reliability analysis. Structural Safety. 2003;25:47-68.
    [9] Au S-K, Beck JL. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics. 2001;16:263-77.
    [10] Katafygiotis LS, Cheung SH. Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study. Structural Safety. 2007;29:194-207.
    [11] Lu Z, Song S, Yue Z, Wang J. Reliability sensitivity method by line sampling. Structural Safety. 2008;30:517-32.
    [12] Pradlwarter HJ, Schuëller GI, Koutsourelakis PS, Charmpis DC. Application of line sampling simulation method to reliability benchmark problems. Structural Safety. 2007;29:208-21.
    [9] Zhang J, Xiao M, Gao L. An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation. Reliability Engineering & System Safety. 2019;188:90-102.
    [10] Gomes HM, Awruch AM. Comparison of response surface and neural network with other methods for structural reliability analysis. Structural Safety. 2004;26:49-67.
    [11] Depina I, Le TMH, Fenton G, Eiksund G. Reliability analysis with Metamodel Line Sampling. Structural Safety. 2016;60:1-15.
    [12] Koutsourelakis PS, Pradlwarter HJ, Schuëller GI. Reliability of structures in high dimensions, part I: algorithms and applications. Probabilistic Engineering Mechanics. 2004;19:409-17.
    [13] Manohar C, Gupta S. Modeling and evaluation of structural reliability: Current status and future directions. Research reviews in structural engineering, Golden Jubilee Publications of Department of Civil Engineering, Indian Institute of Science, Bangalore. 2003.
    [14] Bucher CG, Bourgund U. A fast and efficient response surface approach for structural reliability problems. Structural Safety. 1990;7:57-66.
    [15] Bucher CG. Adaptive sampling — an iterative fast Monte Carlo procedure. Structural Safety. 1988;5:119-26.
    [16] Ang George L, Ang Alfredo HS, Tang Wilson H. Optimal Importance‐Sampling Density Estimator. Journal of Engineering Mechanics. 1992;118:1146-63.
    [17] Papaioannou I, Papadimitriou C, Straub D. Sequential importance sampling for structural reliability analysis. Structural Safety. 2016;62:66-75.
    [18] Ching J, Chen Y-C. Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging. Journal of Engineering Mechanics. 2007;133:816-32.
    [19] Martino L, Elvira V, Luengo D, Corander J. Layered adaptive importance sampling. Statistics and Computing. 2017;27:599-623.
    [20] Katafygiotis LS, Zuev KM. Estimation of small failure probabilities in high dimensions by adaptive linked importance sampling. In: Papadrakakis M, Charmpis DC, Lagaros ND, Tsompanakis Y, editors. Proc. ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering (COMPDYN), Rethymno, Crete.
    [21] Engelund S, Rackwitz R. A benchmark study on importance sampling techniques in structural reliability. Structural Safety. 1993;12:255-76.
    [22] Rubinstein RY, Kroese DP. The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning: Springer Science & Business Media; 2013.
    [23] Kurtz N, Song J. Cross-entropy-based adaptive importance sampling using Gaussian mixture. Structural Safety. 2013;42:35-44.
    [24] Wang Z, Song J. Cross-entropy-based adaptive importance sampling using von Mises-Fisher mixture for high dimensional reliability analysis. Structural Safety. 2016;59:42-52.
    [25] Dubourg V, Sudret B, Deheeger F. Metamodel-based importance sampling for structural reliability analysis. Probabilistic Engineering Mechanics. 2013;33:47-57.
    [26] Echard B, Gayton N, Lemaire M, Relun N. A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models. Reliability Engineering & System Safety. 2013;111:232-40.
    [27] Zhao H, Yue Z, Liu Y, Gao Z, Zhang Y. An efficient reliability method combining adaptive importance sampling and Kriging metamodel. Applied Mathematical Modelling. 2015;39:1853-66.
    [28] Grooteman F. An adaptive directional importance sampling method for structural reliability. Probabilistic Engineering Mechanics. 2011;26:134-41.
    [29] Harbitz A. An efficient sampling method for probability of failure calculation. Structural Safety. 1986;3:109-15.
    [30] Grooteman F. Adaptive radial-based importance sampling method for structural reliability. Structural Safety. 2008;30:533-42.
    [31] Holland JH. Genetic Algorithms. Scientific American. 1992;267:66-73.
    [32] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks1995. p. 1942-8 vol.4.
    [33] Yang X-S. A New Metaheuristic Bat-Inspired Algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N, editors. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 65-74.
    [34] Yang X-S. Firefly Algorithms for Multimodal Optimization. In: Watanabe O, Zeugmann T, editors. Stochastic Algorithms: Foundations and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 169-78.
    [35] Karaboga D, Basturk B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. In: Melin P, Castillo O, Aguilar LT, Kacprzyk J, Pedrycz W, editors. Foundations of Fuzzy Logic and Soft Computing. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. p. 789-98.
    [36] Cheng M-Y, Prayogo D. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures. 2014;139:98-112.
    [37] Winston PH. Artificial intelligence (3rd ed.): Addison-Wesley Longman Publishing Co., Inc.; 1992.
    [38] Poole DL, Mackworth AK. Artificial Intelligence: Foundations of Computational Agents. 2 ed. Cambridge: Cambridge University Press; 2017.
    [39] Haenlein M, Kaplan A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review. 2019;61:5-14.
    [40] Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995;20:273-97.
    [41] Van Gestel T, Suykens JAK, Baesens B, Viaene S, Vanthienen J, Dedene G, et al. Benchmarking Least Squares Support Vector Machine Classifiers. Machine Learning. 2004;54:5-32.
    [42] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408.
    [43] Werbos PJ. An overview of neural networks for control. IEEE Control Systems Magazine. 1991;11:40-1.
    [44] Youn BD, Choi KK, Yang RJ, Gu L. Reliability-based design optimization for crashworthiness of vehicle side impact. Structural and Multidisciplinary Optimization. 2004;26:272-83.
    [45] Lopez RH, Lemosse D, Cursi ES, Rojas JE, El-Hami A. An Approach for the Reliability Based Design Optimization of Laminated Composite Plates. Engineering Optimization. 2011.
    [46] Du X, Chen W. Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design. Journal of Mechanical Design. 2004;126:225-33.
    [47] Papaioannou I, Breitung K, Straub D. Reliability sensitivity estimation with sequential importance sampling. Structural Safety. 2018;75:24-34.
    [48] Ramallo JC, Johnson EA, Spencer BF. “Smart” Base Isolation Systems. Journal of Engineering Mechanics. 2002;128:1088-99.
    [49] Applied Technology Council (ATC-55 Project). United States. Federal Emergency Management Agency. FEMA Disaster Program Information. Washington, DC: FEMA, 2005.
    [50] Sontag ED. Mathematical control theory: deterministic finite dimensional systems (2nd ed.): Springer-Verlag; 1998.

    QR CODE