簡易檢索 / 詳目顯示

研究生: 鄒智揮
Chi-hui Tsou
論文名稱: 聚乳酸/生物可分解高分子與聚乳酸/乙烯官能基共聚物之合膠製備與性質研究
Investigation of preparation and Properties of Poly (lactic acid) / Biodegradable Polymer and Poly(lactic acid)/ Ethylene Glycidyl Methacrylate Copolymer
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 張豐志
Feng-Chih Chang
陳幹男
Kan-nan Chen
黃繼遠
Chi-Yuan Huang
黃國賢
Kuo-Shien Huang
姚薇華
Wei-Hua Yao
吳進三
Chin-sanWu
邱士軒
Shih-Hsuan Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 160
中文關鍵詞: 聚乳酸乙烯官能基共聚物結晶相容性撕裂強度
外文關鍵詞: FePol, compatability; crystallization, functionalized ethylene copolymers; tearing, biodegradable properties
相關次數: 點閱:302下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究方向是以聚乳酸(PLA)為主要材料,分別以Poly (butylene adipate-co- terethphlate) (PBAT)、Poly(ethylene glutaric-co-terephthalate) (FP)與Ethylene Glycidyl Methacrylate Copolymer (EGMC)為改性劑,分別對聚乳酸進行反應性擠壓改性,進一步對機械性質、熱性質、表面型態、結構分析以及生物分解性等性能進行檢測分析,藉此得到具備良好特性之最佳摻混比例,達到改善PLA的機械性質。本論文共分為三大部分:
    第一部份:以Poly (butylene adipate-co- terethphlate) (PBAT) 生物可分解高分子作為改性劑,對聚乳酸進行熔融共混改性,探討其相溶性及結晶性質,由熱示差掃描分析 (DSC)的結果得知,其PLA/PBAT樣品之結晶度(Xc)以及再結晶起始溫度 (Tonset) 隨著PBAT含量的增加而逐漸減小。 動態力學分析 (DMA)與斷面形態 (SEM)分析結果進一步發現,當PBAT添加的含量小於或等於2.5 wt % 時,PLA與PBAT是相容的,在2.5 wt % 以下時,PLAxPBATy系列樣品的斷面形態以及tan δ曲線分別都沒發現產生相分離的PBAT小滴及tan δ峰。
    第二與第三部份:為了改善PLA的力學性能,尤其是撕裂強度,本研究分別採用Poly(lactic acid)/Poly(ethylene glutaric-co-terephthalate) (FP)生物可分解高分子作與Ethylene Glycidyl Methacrylate Copolymer (EGMC) 乙烯官能基共聚物為改性劑,分別對聚乳酸進行熔融共混與反應性擠壓改性,研究結果發現PEGT與EGMC都可有效的改善PLA的撕裂強度,當FP和EGMC的含量為6 wt% 時,其撕裂強度達到最大值。為了解上述這些有趣的性質,本研究進一步分別對PLA/PBAT 、PLA/FP和PLA/EGMC樣品斷面型態及tan 曲線,熱學和抗張強度等性能進行一系列的探討。


    this study, Poly (lactic acid) (PLA) is modified with Poly (butylene adipate-co- terethphlate) (PBAT), Ethylene and Glycidyl Methacrylate Copolymer (EGMC) and FePol to improve the mechanical properties, respectively. The corresponding PLA blends were prepared by melt-blending PBAT, FP and EGMC with PLA. Several investigations, including Fourier transform infrared spectroscopy, Differential scanning calorimetry (DSC) , wide angle X-ray diffraction (WAXD), and thermal, dynamic, mechanical, and weight loss percentage analysis of the PLA/PBAT, PLA/FP and PLA/EGMC blends were performed to understand the significantly improved mechanical properties of the specimens. The presented work was divided into three parts:
    In the first part, the percentage crystallinity (Xc), peak melting temperature (Tm) and onset re-crystallization temperature (Tonset) values of PLA/PBAT specimens reduce gradually as their PBAT contents increase. However, it is worth noting that the Tg values of PLA molecules found by DSC and DMA analysis reduce to the minimum value as the PBAT contents of PLAxPBATy specimens reach 2.5 wt%. Further morphological and DMA analysis of PLA/PBAT specimens reveal that PBAT molecules are compatible with PLA molecules at PBAT contents equal to or less than 2.5 wt%, since no distinguished phase-separated PBAT droplets and tan δ transitions were found on the fracture surfaces and tan δ curves of PLA/PBAT specimens, respectively. In contrast to PLA, the PBAT specimen exhibits highly deformable properties. After blending proper amounts of PBAT in PLA, the inherent brittle deformation behavior of the PLA specimen was successfully improved.
    In the second part, the percentage crystallinity, peak melting temperature and onset re-crystallization temperature values of PLA/FP specimens reduce gradually as their FP contents increase. However, the glass transition temperatures of PLA molecules found by DSC and DMA reduce to the minimum value as the FP contents of PLAxFPy specimens reach 6 wt%. Further DMA and morphological analysis of PLA/FP specimens reveal that FP molecules are compatible with PLA molecules at FP contents equal to or less than 6 wt%, since no distinguished phase-separated FP droplets and tan δ transitions were found on fracture surfaces and tan δ curves of PLA/FP specimens, respectively. In contrast to PLA, the FP specimen exhibits highly deformable and tearing properties. After blending proper amounts of FP in PLA, the inherent brittle deformation and poor tearing behavior of PLA was successfully improved.
    In the third part, the tensile and tear strength values of PLAxEGMCy blown-film specimens in machine and transverse directions improve significantly, and reach their maximal values as their EGMC contents approach an optimum value of 6 wt. %. The melt shear viscosity values of PLAxEGMCy resins, measured at varying shear rates, are significantly higher than those of the PLA resin, and increase consistently with their EGMC contents. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) of PLA and PLAxEGMCy specimens reveal that the percentage crystallinity, peak melting temperature, and onset re-crystallization temperature values of PLAxEGMCy specimens reduce gradually as their EGMC contents increase. In contrast, the glass transition temperatures of PLAxEGMCy specimens increase gradually in conjunction with their EGMC contents. Further DMA and morphological analysis of PLAxEGMCy specimens reveal that the EGMC molecules are compatible with PLA molecules at EGMC contents equal to or less than 2 wt. % because no phase-separated EGMC droplets and tan δ transitions were found on fracture surfaces and tan δ curves of PLAxEGMCy specimens, respectively.

    摘要……………………………………………………………………….I ABSTRACT………………………………………………………...……II 致謝……………………………………………………………………..IV TABL OF CONTENTS………………………………………………… V LIST OF TABLE………………………………………....……...……..IX LIST OF FIGURE…………………………………………….……..… X CHAPTER 1 Prolegomenon……………..…………….…………….............…1 1.1Indtroduction………………………….. …………………………..…1 1.2 Biodegradablepolymer……………………………………….6 1.2.1.The definition of biodegradable polyme…………………….……………6 1.2.2 Biodegradable polymer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . …………….8 1.2.3 Regulations of biodegradable polymer………….….…………………...13 1.3.1 Polylactic acid (PLA)…………… ………………………………16 1.3.2 Synthesis of Polylactic acid…………………………….…….19 1.4.1 Ecoflex (Poly(butylene adipate/terephthalate) (PBAT))……….22 1.5.1 FePol Poly(ethylene glutaric-co-terephthalate) (FP)..………..23 1.6.1 Ethylene Glycidyl Methacrylate Copolymer (EGMC)……..25 References…………………………………………………………………27 CHAPTER 2 Compatible and Crystallization Properties of Poly (lactic acid) / Poly (butylene adipate-co-terethphlate) blends…………………..31 Abstract……………………………………………….….………….......31 2.1 Introduction……………………………………………………………32 2.2 Experimental …………………………………………………………..36 2.2.1 Materials and sample preparation………………………………….36 2.2.2 Dynamic mechanical Properties………………………….…….…..38 2.2.3 Thermal properties……………………..……………………………….39 2.2.4 Tensile properties……………………………………………...…..40 2.2.5 Morphology analysis……………………………………………..41 2.2.6 Wide angle X-ray diffraction properties……. …. …. …. …….42 2.3 Results and discussion…………………………………….…….……..43 2.3.1 DSC analysis………………………………………………………43 2.3.2 Morphology analysis………………….………..……………………..48 2.3.3 Dynamic mechanical analysis (DMA)……………………….……..50 2.3.4 Wide angle X-ray diffraction properties…………………..……..56 2.3.5 Tensile properties analysis……………………………………….59 2.4 Conclusions………………………………………………………..60 References………………………………………………………………63 CHAPTER 3 Compatible Tearing Properties of Poly (ethylene glutaric-co-terephthalate) Copolyester Blends…………….………….............65 Abstract…………………………………………………………………..65 3.1 Introduction…………………………………………………………..67 3.2 Experimental……………………………………………..……..……69 3.2.1 Materials and Sample Preparation……………………………….………69 3.2.2 FTIR and NMR Spectroscopic Analysis…………………………………71 3.2.3 Thermal Properties……………………….……..………………73 3.2.4 Dynamic Mechanical Analysisrmal Propertiest………………..…….…72 3.2.5 Tearing Experiments………………………………..……….…………74 3.2.6 Morphology Analysis……………………………………….…………….…75 3.3 Results and Discussion………………………………………..……76

    Chapter 1 Introduction
    1. X. M. Wang, Q. F. Ke, Polym. Eng. Sci., 46, 1 (2006).
    2. D. Zhang, Q. Sun, J. Appl. Polym. Sci., 94, 1218 (2004).
    3. J. G. McCulloch, Int. Nonwovens. J., 8, 139 (1999).
    4. Q. Sun, D. Zhang, J. Appl. Polym. Sci., 93, 2090 (2004).
    5. R. Zhao, L. C. Wadsworth, Polym. Int., 52, 133 (2003).
    6. Y. N. Joo, O. Masami, O. Hirotaka, N. Mitsuru, U. Arimitsu, M. Masatoshi, Polymer, 47, 1340 (2006).
    7. H. Li, A. H. Michel, Polymer, 10, 1016 (2007).
    8. Z. Kulinski, E. Piorkowska, Polymer, 46, 10290 (2005).
    9. Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Polymer, 44, 5681 (2003).
    10. W. C. Lai, W. B. Liau, T. T. Lin, Polymer, 45, 3073 (2004).
    11. E. Piorkowska, Z. Kulinski, A. Galeski, R. Masirek, Polymer, 47, 7178 (2006).
    12. M. Pluta, A. Galeski, J. Appl. Polym. Sci., 86, 1386(2002).
    13. I. Rashkov, N. Manolova, S. M. Li, J. L. Espartero, M. Vert, Macromolecules, 29, 50 (1996).
    14. X. H. Chen, S. P. McCarthy, R. A. Gross, Macromolecules, 30, 4295 (1997).
    15. G. Maglio, A. Migliozzi, R. Palumbo, Polymer, 44, 369 (2003).
    16. Chon, D.; Hotovely-Salomon, A. Polymer 2005, 46, 2068.
    17. A. J. Nijenhuis, E. Colstee, D. W. Grijpma, A. J. Pennings, Polymer, 37, 5849 (1996).
    18. N. S. Choi, C. H. Kim, K. Y. Cho, J. K. Park, J. Appl. Polym. Sci., 86, 1892 (2002).
    19. Y. H. Na, Y. He, X. Shuai, Y. Kikkawa, Y. Doi, Y. Inoue, Biomacromolecules, 3, 1179 (2002).
    20. L. Wang, W. Ma, R. A. Gross, S. P. McCarthy, Polym. Degrad. Stab.,
    59, 161 (1998).
    21. R. Dell’Erba, G. Groeninckx, G. Maglio, M. Malinconico, A. Migliozzi, Polymer, 42, 7831 (2001).
    22. C. C. Chen, J. Y. Chueh, H. Tseng, H. M. Huang, S. Y. Lee, Biomaterials, 24, 2297 (2003).
    23. J. M. Yang, V. Dave, R. A.Gross, S. P. McCarthy, Polym, 37, 437 (1996).
    24. J. W. Park, S. S. Im, Polymer, 36, 4077 (1995).
    25. E. Blűmm, A. J. Owen, Polymer, 36, 4077 (1995).
    26. L. L. Zhang, X. M. Deng, S. J. Zhao, Z. T. Huang, J. Appl. Polym.
    Sci., 65, 1849 (1997).
    27. M. L. Focarete, M. Scandola, P. Dobrzynski, M. Kowalczuk,
    Macromolecules, 35, 8472 (2002).
    28. L. L. Zhang, C. D. Xiong, X. M. Deng, Polymer, 37, 235 (1996).
    29. N. Koyama, Y. Doi, Polymer, 38, 1589 (1997).
    30. I. Ohkoshi, H. Abe, Y. Doi, Polymer, 41, 5985 (2000).
    31. J. W.Park, S. S. Im, J Polym Sci Part B-Polym Phys, 40, 1931 (2002).
    32. J. W Park, S. S. Im, J Appl Polym Sci, 86, 647 (2002).
    33. Y. Xu, M. A. Hanna, Carbohydrate polyms, 59, 521 (2005).
    34. U. Witt, T. Einig, M.Yamamoto, I. Kleeberg, W. D. Deckwer,
    Chemosphere, 44, 298 (2001).
    35. S.Yoshihiro, S.Yuichi, S. Mitsuhiro, J Appl Polym Sci, 95,
    386 (2005).
    36. L. Jiang, M. P.Wolcott, J. Zhang, Biomacromolecules, 7, 199 (2006).
    37. L. Jiang, M. P. Wolcott and J. W. Zhang, Biomacromolecules, 7, 199 (2006).
    38. U.Witt, T. Einig, M. Yamamoto, I. Kleeberg, W. D. Deckwer, R. J. Muller, Chemosphere, 44, 289−299 (2001).
    39. T. Y Liu, W. C. Lin, M. C.Yang, S. Y.Chen, Polymer, 46, 12586 (2005).
    40. L. Jiang, M. P.Wolcott, J. Zhang, Biomacromolecules 2006, 7,
    199.
    41. Qinglian Wei, Shi-Zhao Kang, Jin Mu. Colloids and Surfaces A:
    Physicochem. Eng. Aspects 247, 125(2004).
    42. AIMPLAS, Adv. Mater. (2003)
    43. Udo Pagga, Polym. Deg. Stab. 59 (1998) 371
    44 International Standards for Business, Government and Society.
    45. Steinbuchel, A. Biopolymers, Volume 10: General Aspects and
    Special Applications. Wiley-VCH: Weinheim (Germany), 2003, 516
    46. M.Avella, E. Bonadies, E.Martuscelli, European current
    standardization for plastic packaging recoverable through omposting
    and biodegradation. Polymer testing, 20, 517-521 (2001).
    47. J.Fritz, U. Link, R. Braun, Environmental Impacts of
    biobased/biodegradable Packaging. Starch, 53; 105-109 (2001).
    48. R. R. Karlsson, A. C.Albertsson, Biodegradable polymers and environmental interaction. Polymer Eng & Sci., 38(8), 1251-1253 (1998).
    49. D. J. Kaplan, J. M. Mayer, D. Ball, J. McMassie, A.L. Allen, P. Stenhouse, Fundamentals of biodegradable polymers. In Biodegradable polymers and packaging; Ching, C., Kaplan, D.L., Thomas, E.L.; Eds.; Technomic publication: Basel, 1993, 1-42.
    50. K. Van de Velde, P. Kiekens, Biopolymers: overview of several properties and consequences on their applications. Polymer Testing., 21, 433-442 (2002).
    51. A. Rouilly, L. Rigal, Agro-materials: a bibliographic review. J. Macomol. Sci.-Part C. Polymer Reviews, C42(4), 441-479 (2002).
    52. R. Chandra, R. Rustgi, Biodegradable polymers. Prog Polym Sci., 23, 1273-1335 (1998).
    53. BASF’s Ecoflex, Resins Earn the Biodegradable Products Institute’s Emblem, press release, Ewire, June 23 2003.
    54. BASF, BASF Increases Capacity for Biodegradable, news release, April 26, 2005
    55. BASF, Ecoflex Biodegradable Plastic, undated brochure.

    Chapter 2 Compatible and Crystallization Properties of Poly (lactic acid) / Poly (butylene adipate-co-terethphlate) blends
    1. Y. N. Joo, O. Masami, O. Hirotaka, N. Mitsuru, U. Arimitsu, M. Masatoshi, Polymer, 47, 1340 (2006).
    2. H. Li, A. H. Michel, Polymer, 10, 1016 (2007).
    3. Z. Kulinski, E. Piorkowska, Polymer, 46, 10290. (2005)
    4. Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Polymer, 44, 5681 (2003).
    5. W. C. Lai, W. B. Liau, T. T. Lin, Polymer; 45, 3073 (2004).
    6. E. Piorkowska, Z. Kulinski, A. Galeski, R. Masirek, Polymer, 47, 7178 (2006).
    7. M. Pluta, A. Galeski, J. Appl. Polym. Sci., 86, 1386 (2002).
    8. I. Rashkov, N. Manolova, S. M. Li, J. L. Espartero, M. Vert, Macromolecules, 29, 50 (1996).
    9. X. H. Chen, S. P. McCarthy, R. A. Gross, Macromolecules, 30, 4295 (1997).
    10. G. Maglio, A. Migliozzi, R. Palumbo, Polymer, 44, 369 (2003).
    11. D. Chon, A. Hotovely-Salomon, Polymer, 46, 2068 (2005).
    12. A. J. Nijenhuis, E. Colstee, D. W. Grijpma, A. J. Pennings, Polymer, 37, 5849 (1996).
    13. N. S. Choi, C. H. Kim, K. Y. Cho, J. K. Park, J. Appl. Polym. Sci., 86, 1892 (2002).
    14. Y. H. Na, Y. He, X. Shuai, Y. Kikkawa, Y. Doi, Y. Inoue, Biomacromolecules, 3, 1179 (2002).
    15. L. Wang, W. Ma, R. A. Gross, S. P. McCarthy, Polym. Degrad. Stab., 59, 161 (1998).
    16. E. R. Dell, G. Groeninckx, G. Maglio, M. Malinconico, A. Migliozzi, Polymer, 42, 7831 (2001).
    17. C. C. Chen, J. Y. Chueh, H. Tseng, H. M. Huang, S. Y. Lee, Biomaterials, 24, 2297 (2003).
    18. J. M. Yang, V. Dave, R. A. Gross, S. P. McCarthy, Polymer, 37, 437 (1996).
    19. J. W. Park, S. S. Im, Polymer, 36, 4077 (1995).
    20. E. Blűmm, A. J. Owen, Polymer, 36, 4077 (1995).
    21. L. L. Zhang, X. M. Deng, S. J. Zhao, Z. T. Huang, J. Appl. Polym. Sci., 65, 1849 (1997).
    22. M. L. Focarete, M. Scandola, P. Dobrzynski, M. Kowalczuk, Macromolecules, 35, 8472 (2002).
    23. L. L. Zhang, C. D. Xiong, X. M. Deng, Polymer, 37, 235 (1996).
    24. N. Koyama, Y. Doi, Polymer, 38, 1589 (1997).
    25. I. Ohkoshi, H. Abe, Y. Doi, Polymer, 41, 5985 (2000).
    26. J. W. Park, S. S. Im, J. Polym. Sci. Part B-Polym Phys, 40, 1931 (2002).
    27. J. W Park, S. S. Im, J. Appl. Polym. Sci., 86, 647 (2002).
    28. Y. Xu, M. A. Hanna, Carbohydrate polymers, 59, 521 (2005).
    29. U. Witt, T. Einig, M. Yamamoto, I. Kleeberg, W. D. Deckwer, Chemosphere, 44, 298 (2001).
    30. S. Yoshihiro, S. Yuichi, S. Mitsuhiro, J. Appl. Polym. Sci., 95, 386 (2005).
    31. L. Jiang, M. P. Wolcott, J. Zhang, Biomacromolecules, 7, 199 (2006).
    32. T. Y. Liu, W. C. Lin, M. C. Yang, S. Y. Chen, Polymer, 46, 12586 (2005).
    33. E. W. Fischer, H. J. Sterzel, G. Wegner, Z. Z. Kolloid, Polymer, 251, 980 (1973).
    34. F. Rezgui, M. Swistek, J. M. Hiver, C. G’Sell, T. Sadoun, Polymer 46, 7370 (2005).
    35. O. Martin, L. Averous, Polymer, 42, 6209 (2001).
    36. J. T. Yeh, C. Y. Huang, W. L. Chai, K .N. Chen, J. Appl. Polym. Sci. accepted for publication
    37. P. DeSantis, A. J. Kovacs, Biopolym, 6, 299 (1968).
    38. S. K. Saha, H. Tsuji, Polym. Degrad. Stab., 91, 1665 (2006).
    39. D. W. Grijpma, G. J. Zondervan, A. J. Pennings, Polym. Bulletin., 25, 327 (1991).
    40. W. Zhong, J. Ge, Z. Gu, W. Li, X. Chen, Y. Zang, Y. Yang, J. Appl. Polym. Sci., 74, 2546 (1999).
    41. S. Solarski, M. Ferreira, E. Devaux, Polymer, 46, 11187 (2005).
    42. K. Kuwabara, Z. Gan, T. Nakamura, H. Abe, Y. Doi, Biomacromolecules, 3, 390 (2002).
    43. H. J. Kang, S. S. Park, J. Appl. Polym. Sci., 72, 593 (1999).

    Chapter 3 Compatible Tearing Properties of
    Poly (ethylene glutaric-co-terephthalate)
    Copolyester Blends
    1. G. Biresaw, C. J.Carriere, J. Polym. Sci., 40, 2248, (2002).
    2. D.Garlotta, J. Polym. Environ., 9, 63, (2001).
    3. R. G. Sinclair, Antec, 237, 1214, (1987).
    4. H. R. Kricheldorf, I. Kreiser-Saunders, Macromol Symp., 103, 85, (1996).
    5. S. Jacobsen, H.G. Fritz, Polym. Eng. and Sci., 39, 1303, (1999).
    6. S. Jacobsen, H. G. Fritz, Polym. Eng. and Sci., 36, 2799, (1996).
    7. C. S. Wu, Macromo Biosci, 5, 353, (2005).
    8. I. Rashkov, N. Manolova, S. M. Li, J. L. Espartero, M. Vert, Macromol, 29, 50, (1996).
    9. X. H. Chen, S. P. Mccarthy, R. A. Gross, Macromol, 30, 4295, (1997).
    10. G. Maglio, A. Migliozzi, R. Palumbo, Polymer, 44, 369, (2003).
    11. D. Chon, A. Hotovely-Salomon, Polymer, 46, 2068, (2005).
    12. N. S. Choi, C. H. Kim, K. Y. Cho, J. K. Park, J. Appl. Polym. Sci., 86, 1892, (2002).
    13. Y. H. Na, Y. He, X. Shuai, Y. Kikkawa, Y. Doi, Y. Inoue, Biomacromol, 3, 1179, (2002).
    14. E. Blűmm, A. J. Owen, Polymer, 36, 4077, (1995).
    15. L. L. Zhang, X. M. Deng, S. J. Zhao, Z. T. Huang, J. Appl. Polym. Sci., 65, 1849, (1997).
    16. M. L. Focarete, M. Scandola, P. Dobrzynski, M. Kowalczuk, Macromol, 35, 8472, (2002).
    17. L. L. Zhang, C. D. Xiong, X. M. Deng, Polymer, 37, 235, (2006).
    18. A. J. Nijenhuis, E. Colstee, D. W. Grijpma, A. J. Pennings, Polymer, 37, 5849, (1996).
    19. L. Wang, W. Ma, R. A. Gross, S. P. Mccarthy, Polym. Degrad. Stab., 59, 161, (1998).
    20. R. Dell’Erba, G. Groeninckx, G. Maglio, M. Malinconico, A. Migliozzi, Polymer, 42, 7831, (2001).
    21. C. C. Chen, J. Y. Chueh, H. Tseng, H. M. Huang, S. Y. Lee, Biomaterials, 24, 2297, (2003).
    22. A. M. Gajria, V. Dave, R. A. Gross, S. P. Mccarthy, Polymer, 37, 437, (1996).
    23. N. Koyama, Y. Doi, Polymer, 38, 1589, (1997).
    24. I. Ohkoshi, H. Abe, Y. Doi, Polymer, 41, 5985, (2000).
    25. J. W. Park, S. S. Im, J. Polym. Sci., 40, 1931, (2002).
    26. J. W. Park, S. S. Im, J. Appl. Polym. Sci., 86, 647, (2002).
    27. O. Martin, L. Averous, Polymer, 42, 6209, (2001).
    28. M. Sheth, A. Kumar, V. Dave, R. A. Gross, S. P. Mccarthy, J. Appl. Polym. Sci., 66, 1495, (1997).
    29. Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Polymer, 44, 5681, (2003).
    30. Y. Hu, M. Rogunova, V. Topolkaraev, A. Hiltner, E. Baer, Polymer, 44, 5701, (2003).
    31. Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Polymer, 44, 5711, (2003).
    32. Z. kulinski, E. Piorkowska, Polymer, 46, 10290, (2005).
    33. M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, E. Wintermantel, J. Appl. Polym. Sci., 90, 1731, (2003).
    34. L. V. Labrecque, R. A. Kumar, V. Dave, R. A. Gross, S. P. Mccarthy, J. Appl. Polym. Sci., 66, 1507, (1997).
    35. N. Ljungberg, B. Wesslen, J. Appl. Polym. Sci., 86, 1227, (2002).
    36. N. Ljungberg, B. Wesslen, Polymer, 44, 7679, (2003).
    37. N. Ljungberg, T. Andersson, B. Wesslen, J. Appl. Polym. Sci., 88, 3239, (2003).
    38. N. Ljungberg, B. Wesslen, J. Appl. Polym. Sci., 94, 2140, (2004).
    39. N. Ljungberg, B. Wesslen, Biomacromo, 6, 1789, (2005).
    40. S. Jacobsen, H. G. Fritz, Polym. Eng. Sci., 39, 1303, (1999).
    41. J. F. Zhang, X. Sun, Polym. Int., 53, 716, (2004).
    42. P. Desantis, A. Kovacs, J. Biopolym., 6, 299, (1968).
    43. B. Eling, S. Gogolewski, A. Pennings, J. Polym., 23, 1587, (1982).
    44. J. T. Yeh, C. H. Tsou, C. Y. Huang, K. N. Chen, C. S. Wu, W. L. Chai, J. Appl. Polym. Sci., Accepted.
    45. E. W. Fischer, H. J. Sterzel, G. Wegner, Z. Z. Kolloid, Polymer, 251, 980, (1973).
    46. C. S. Wu, Polym. Degrad. Stab., 80, 127, (2003).
    47. C. S. Wu, Macromol. Biosci., 5, 352, (2005).
    48. F. Rezgui, M. Swistek, J. M. Hiver, C. G’Sell, T. Sadoun, Polymer, 46, 7370, (2005).
    49. J. T. Yeh, W. L. Chai, C. S. Wu, K. N. Chen, J. Appl. Polym. Sci., 112, 2757-2763, (2009).

    Chapter 4 The Compatible and Mechanical Properties of
    Biodegradable Poly (Lactic Acid)/ Ethylene
    Glycidyl Methacrylate Copolymer Blends
    1. K. Meinander, M. Niemi, J. S. Hakola, J. F. Selin, Macromol Symp, 1123, 147 (1997).
    2. I. R ashkov, N. Manolova, S. M. Li, J. L. Espartero, M. Vert, Macromolecules, 29, 50 (1996).
    3. X. H. Chen, S. P. McCarthy, R. A. Gross, Macromolecules, 30, 4295 (1997)
    4. G. Maglio, A. Migliozzi, R. Palumbo, Polymer, 44, 369(2003).
    5. D. Chon, Hotovely-Salomon A Polymer, 46, 2068 (2005).
    6. N. S. Choi, S. H. Kim, K. Y. Cho, J. K. Park, J. Appl. Polym. Sci., 86, 1892 (2002).
    7. Y. H. Na, Y. He, X. Shuai, Y. Kikkawa, Y. Doi, Y. Inoue, Biomacromolecules, 3, 1179 (2002).
    8. E. Blűmm, A. J. Owen, Polymer, 36, 4077 (1995).
    9. L. L. Zhang, X. M. Deng, S. J. Zhao, Z. T. J. Huang, Appl. Polym. Sci., 65, 1849 (1997).
    10. M. L. Focarete, M. Scandola, P. Dobrzynski, M. Kowalczuk, Macromolecules, 35, 8472 (2002).
    11. L. L. Zhang, C. D. Xiong, X. M. Deng, Polymer, 37, 235 (1996).
    12. A. J. Nijenhuis, E. Colstee, D. W. Grijpma, A. Pennings, J. Polymer., 37, 5849 (1996).
    13. L. Wang, W. Ma, R. A. Gross, S. P. McCarthy, Polym. Degrad. Stab., 59, 161(1998).
    14. G. Groeninckx, G. Maglio, M. Malinconico, A. Migliozzi, Polymer, 42, 831(2001).
    15. C. C. Chen, J. Y. Chueh, H. Tseng, H. M. Huang, S. Y. Lee Biomaterials, 24, 2297 (2003).
    16. A. M. Gajria, V. Dave, R. A. Gross, Polymer, 37, 437 (1996).
    17. N. Koyama, Y. Doi, Polymer, 38, 1589 (1997).
    18. I. Ohkoshi, H. Abe, Y. Doi, Polymer, 41, 5985(2000).
    19. J. W. Park, S. S. Im, J. Polym. Sci. Part B: Polym. Phys., 40, 931 (2002).
    20. J. W. Park, S. S. Im, J. Appl. Polym. Sci. 86, 647(2002).
    21. J. T. Yeh, W. L. Chai, C. Y. Huang, K. N. Chen, Appl. Polym. Sci. 112, 2757 (2009).
    22. J. T. Yeh, C. H. Tsou, C. H. Huang, K. N. Chen, C. S. Wu, W. L. Chai, J. Appl. Polym. Sci., 116, 680 (2010).
    23. J. T. Yeh, C. H. Tsou, W. Lu, Y. M. Li, H. W. Xiao, C. H. Huang, K. N. Chen, C. S. Wu, W. L. Chai, J. Polym. Sci. : Part B: Polym. Phy., 48, 913(2010).
    24. E. W. Fischer, H. J. Sterzel, G. Wegner, Z. Z. Kolloid, Polymer, 251, 980 (1973).
    25. R. P. Wool, D. Raghavan, G. D. Wagner, S. J. Billieux, Appl. Polym. Sci. 77, 1643(2000).
    26. M. S. Goheen, R. P. Wool, J. Appl. Polym. Sci., 42, 2691(1991).
    27. F. Rezgui, M. Swistek, J. M. Hiver, C. G’Sell, T. Sadoun, Polymer, 46, 7370 (2005).
    28. O. Martin, L. Averous, Polymer, 42, 6209 (2001).
    29. E. W. Fischer, H. J. Sterzel, G. Wegner, Z. Z. Koloid, Polymer, 251, 980 (1973).

    無法下載圖示 全文公開日期 2017/01/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE