簡易檢索 / 詳目顯示

研究生: Lalisa Wakjira Duresa
Lalisa Wakjira Duresa
論文名稱: Decontamination of Inorganic and Organic Pollutants in Wastewater Using Oxy-sulfide and Oxy-bromide based Photocatalysts
Decontamination of Inorganic and Organic Pollutants in Wastewater Using Oxy-sulfide and Oxy-bromide based Photocatalysts
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: Yao-Tung Lin
Yao-Tung Lin
Shih-Yun Chen
Shih-Yun Chen
Ren-Kae Shiue
Ren-Kae Shiue
Dong-Hau Kuo
Dong-Hau Kuo
Wen-Cheng Ke
Wen-Cheng Ke
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 154
中文關鍵詞: In-doped Zn(O,S)In-BiOBr1-xIx光催化劑Cr(VI)還原有機污染物降解摻雜固溶體
外文關鍵詞: In-doped Zn(O,S), In-BiOBr1-xIx, photocalalyst, Cr(VI), reduction, organic pollutants, degradation, doping, solid solution
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

從電鍍、皮革、印染和製造業所產生的六價鉻排放到環境中,由於其高毒性而對人類造成嚴重的健康問題,還有其他有無毒物質如有機染料和非染料也同樣會導致健康問題。這些污染物由於它們影響了生態和環境,因此為了有效地處理它們,我們使用了新型光催化劑還原或氧化使其毒性較小或無毒。
在第一項工作中,我們的目的是有效地以光催化還原廢水中的劇毒六價鉻汙染物。在此我們利用簡易的低溫方法製備了具有不同銦前驅物含量之銦摻雜Zn(O,S)奈米顆粒,以還原高毒性的Cr(VI),並以不同的檢測方式測定其性能。其中含有5摩爾百分比的銦前驅物的ZnInOS-5在光照射後,在3分鐘內還原了99.9%的Cr(VI)。ZnInOS-5還原Cr(VI)的速度是無摻雜之ZnInOS-0的46倍。In摻雜Zn(O,S)之光催化活性的增強可以歸因於其粒徑小,電荷轉移電阻低以及光生空穴和電子的複合率低。由於其卓越的性能,ZnInOS-5是光催化Cr(VI)降解的理想選擇。
在第二項工作中,透過簡易的室溫水解法在沒有任何有毒的沉澱化學物質和任何封端劑下成功地合成不同銦含量的In摻雜BiOBr。通過不同的檢測技術系統地分析了所有製備的光催化劑,並測試了它們對RhB的光催化降解。其中,In前驅物相對於In和Bi前驅物總量為15 mol.%的In-15-BiOBr顯示出最佳的光催化活性。In-15-BiOBr僅在15分鐘內即可完全降解10 mg / L RhB水溶液,其速度是純BiOBr的4.7倍。In摻雜所顯示的高度增強的光催化活性歸因於所製備的In摻雜的BiOBr光催化劑的較低的電荷轉移阻力和較高的電荷分離。我們將提出可能的In-15-BiOBr光催化降解RhB的機制。
在第三項工作中,已在室溫下製備了一系列不含模板的In摻雜BiOBrxI1-x固溶體納米片光催化劑,並通過各種方法對其進行了特徵分析。它完全降解了帶正電的甲基橙(MO),帶負電的羅丹明B(RhB)和亞甲基藍(MB)有機染料以及糠醛的中性和無色非染料有機化合物。平帶電位提供了將溶解的O2還原為導帶中O_2^(.-)可能性,而捕獲實驗發現 (O_2^(.-) ) 是主要的自由基種類,接著h +進行光降解。。結果表明,In-BiOBrI-0.4具有優異的光催化降解活性,這可能是由於金屬離子摻雜與固溶體形成之間的協同作用所致。如光學和光電化學研究所證實的,它進一步提高了可見光收集能力和光致電荷載流子分離效率。確定了反應速率的順序並提出了機理。這項工作可以為設計有效的光催化劑進行環境修復奠定基礎。


Toxic inorganic and organic pollutants are released to the environment from different industries. Hexavalent chromium that mainly discharged from electroplating, leather, dyeing, and manufacturing industries causes serious health problems to human beings due to its high toxicity. Other toxic pollutants discharged to the water bodies include organic dyes and non-dyes that can cause health problems. These inorganic and organic pollutants need to be either reduced or oxidized to make them less toxic or nontoxic. To effectively treat them, novel photocatalysts are employed due to their ecological and environmental influences.
In the first work, efficient photocatalytic reduction of highly toxic hexavalent chromium pollutants from wastewater was focused. Here, indium doped zinc oxysulfide nanoparticles with different indium precursor contents were prepared by a facile low-temperature method to reduce highly toxic Cr(VI). The as-prepared photocatalysts were characterized using different techniques. The photocatalytic activities of the as-prepared nanoparticles were evaluated by the photocatalytic reduction of Cr(VI). ZnInOS-5 with 5 molar percentage indium precursor performed 99.9% reduction of Cr(VI) within 3 minutes of light irradiation. The rate of Cr(VI) reduction by ZnInOS-5 was 46 times faster than In-free ZnInOS-0. The enhanced photocatalytic activities by In-doped Zn(O,S) were attributed to small particle size, low charge-transfer resistance, and low recombination rate of photo-generated holes and electrons. Due to its excellent performance, ZnInOS-5 is an ideal candidate for photocatalytic Cr(VI) detoxification.
On the second work, the In-doped BiOBr nanosheet was successfully synthesized with different amounts of indium by a simple room temperature hydrolysis method without any toxic precipitation chemicals and/or any capping agent. All the as-prepared photocatalysts were systematically characterized by using different techniques and tested for their photocatalytic degradation of RhB. All the In-doped photocatalysts showed enhanced photocatalytic activity under visible light irradiation. Among all, In-15-BiOBr with 15 mol.% In precursor relative to total In and Bi precursors showed the best photocatalytic activity. In-15-BiOBr completely degraded 10 mg/L RhB aqueous solution within only 15 minutes with a rate of 4.7 times faster than the pure BiOBr. The highly enhanced photocatalytic activity shown with In doping was ascribed to lower charge transfer resistance and high charge separation of the as-prepared In-doped BiOBr photocatalyst. A possible photocatalytic RhB degradation mechanism with In-15-BiOBr using visible light was proposed.
In the third work, a series of template free In-doped BiOBrxI1-x solid solution nanosheet photocatalysts have been prepared at room temperature and characterized by various methods. Complete degradation of positively charged methyl orange (MO), negatively charged Rhodamine B (RhB) and methylene blue (MB) organic dyes, and neutral and colorless non-dye organic compound of furfural was attained. The flat band potential offered the possibility of reduction of dissolved O2 to O_2^(.-) in the conduction band while the trapping experiment identified the (O_2^(.-) ) is the main radical species followed by h+ for the photodegradation. The result indicated In-BiOBrI-0.4 had an excellent photocatalytic degradation activity which could be due to the synergetic effect between metal ion doping and solid solution formation. It further promotes visible light-harvesting ability and photoinduced charge carrier separation efficiency as confirmed by the optical and photoelectrochemical investigations. The order of the reaction rate was determined and the mechanism was proposed. This work can lay a base for the design of effective photocatalyst toward environmental remediation.

Contents Abstract I Acknowledgments IV List of acronyms and symbols IX List of Figures XI List of Tables XVII CHAPTER ONE 1 1. Introduction 1 1.1. Background of the Study 1 1.2. Inorganic contaminants 2 1.3. Organic Contaminants 3 1.4. Wastewater treatment methods 4 1.4.1. Photocatalytic treatment method 5 1.4.2. Doping 6 1.4.3. Solid Solution 8 1.5. Mechanism of Photocatalytic Reactions 9 1.6. Motivation for the study 10 1.7. Objectives of the Research 10 1.7.1. General Objectives 11 1.7.2. Specific Objectives 11 CHAPTER TWO 13 2. Literature Review 13 2.1. Catalysts 13 2.1.1. Photocatalysts 13 2.1.2. Metal oxy-sulfides 14 2.1.3. Bismuth oxy-bromide 24 CHAPTER THREE 28 3. Experimental 28 3.1. Chemicals 28 3.2. Synthesis of Catalysts 28 3.2.1. Synthesis of In-doped Zn(O,S) 28 3.2.2. Synthesis of In-doped BiOBr 29 3.2.3. Synthesis of the In-BiOBr1-xIx photocatalyst 29 3.3. Characterizations 30 3.3.1. X-ray diffraction 30 3.3.2. Raman Spectroscopy 33 3.3.3. X-ray photoelectron Spectroscopy 33 3.3.4. Field-emission scanning electron microscopy 34 3.3.5. Transmission electron microscopy 35 3.3.6. UV-vis Spectroscopy 35 3.3.7. Photoluminescence Spectroscopy Analysis 36 3.3.8. Electrochemical Impedance Spectroscopy, Photocurrent response, Mott-Schottky Characterizations, Ultra performance Chromatography, and GC-MS Chromatography 37 3.4. Photocatalytic Activities 37 CHAPTER FOUR 41 4. Results and Discussion 41 4.1. Highly Enhanced Photocatalytic Cr(VI) Reduction Using In-doped Zn(O,S) Nanoparticles 41 4.1.1. Material Characterizations 42 4.1.2. Photocatalytic Cr(VI) reduction 51 4.1.3. Summary 60 4.2. Simple room temperature synthesis of In-doped BiOBr nanosheet and its highly enhanced photocatalytic activity under visible light irradiation 61 4.2.1. Material Characterizations 62 4.2.2. Photocatalytic activity test 70 4.2.3. Summary 76 4.3. Room-temperature synthesized In-BiOBr1-xIx nanosheets with visible-light-driven superior photocatalytic activity: Degradation of dye/non-dye organic pollutants for environmental remediation 77 4.3.1. Materials Characterization 78 4.3.2. Photocatalytic activity test 87 4.3.3. Summary 96 CHAPTER FIVE 98 5. Conclusion and Outlook 98 5.1. Conclusion 98 5.2. Suggestions and Outlook 101 References 103

[1] L. Shi, Y. Yin, L.-C. Zhang, S. Wang, M. Sillanpää, H. Sun, Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: a review, Applied Catalysis B: Environmental, 248 (2019) 405-422.
[2] R. Jiang, M. Wang, W. Chen, X. Li, M. Balseiro-Romero, P.C. Baveye, Ecological risk of combined pollution on soil ecosystem functions: Insight from the functional sensitivity and stability, Environmental Pollution, 255 (2019) 113184.
[3] A.R. Ribeiro, O.C. Nunes, M.F. Pereira, A.M. Silva, An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environment international, 75 (2015) 33-51.
[4] M.Z. Jacobson, The health and climate impacts of carbon capture and direct air capture, Energy & Environmental Science, 12 (2019) 3567-3574.
[5] N. Hashim, P. Natarajan, A.K. Ray, Intrinsic kinetic study for photocatalytic degradation of diclofenac under UV and visible light, Industrial & Engineering Chemistry Research, 53 (2014) 18637-18646.
[6] C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches, Journal of environmental management, 182 (2016) 351-366.
[7] S. Wojtyła, T. Baran, Insight on doped ZnS and its activity towards photocatalytic removing of Cr(VI) from wastewater in the presence of organic pollutants, Materials Chemistry and Physics, 212 (2018) 103-112.
[8] B. Wang, Y. Zhou, L. Li, H. Xu, Y. Sun, Y. Du, Y. Wang, In Situ Synthesis of TiO2-Doped Mesoporous Silica from Coal Fly Ash for the Photocatalytic Degradation of Dyes, Industrial & Engineering Chemistry Research, 57 (2018) 15632-15637.
[9] C. Dong, J. Lu, B. Qiu, B. Shen, M. Xing, J. Zhang, Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions, Applied Catalysis B: Environmental, 222 (2018) 146-156.
[10] H. Liu, X. Gu, C. Wei, H. Fu, P.J. Alvarez, Q. Li, S. Zheng, X. Qu, D. Zhu, Threshold concentrations of silver ions exist for the sunlight-induced formation of silver nanoparticles in the presence of natural organic matter, Environmental science & technology, 52 (2018) 4040-4050.
[11] Q. Liang, H. Luo, J. Geng, J. Chen, Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(VI), Chemical Engineering Journal, 338 (2018) 62-71.
[12] X. Guo, G.T. Fei, H. Su, L. De Zhang, High-performance and reproducible polyaniline nanowire/tubes for removal of Cr(VI) in aqueous solution, The Journal of Physical Chemistry C, 115 (2011) 1608-1613.
[13] S. Rengaraj, S. Venkataraj, J.-W. Yeon, Y. Kim, X. Li, G. Pang, Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination, Applied Catalysis B: Environmental, 77 (2007) 157-165.
[14] C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review, Applied Catalysis B: Environmental, 193 (2016) 198-216.
[15] H. Chu, X. Liu, B. Liu, G. Zhu, W. Lei, H. Du, J. Liu, J. Li, C. Li, C. Sun, Hexagonal 2H-MoSe2 broad spectrum active photocatalyst for Cr(VI) reduction, Scientific reports, 6 (2016) 35304.
[16] Y. Ku, I.-L. Jung, Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water research, 35 (2001) 135-142.
[17] S. Nezar, Y. Cherifi, A. Barras, A. Addad, E. Dogheche, N. Saoula, N.A. Laoufi, P. Roussel, S. Szunerits, R. Boukherroub, Efficient reduction of Cr(VI) under visible light irradiation using CuS nanostructures, Arabian Journal of Chemistry, 12 (2019) 215-224.
[18] Z. Wang, J. Yang, Y. Li, Q. Zhuang, J. Gu, In situ Carbothermal Synthesis of Nanoscale Zero‐Valent Iron Functionalized Porous Carbon from Metal–Organic Frameworks for Efficient Detoxification of Chromium(VI), European Journal of Inorganic Chemistry, 2018 (2018) 23-30.
[19] W.C. de Vries, M. Niehues, M. Wissing, T. Würthwein, F. Mäsing, C. Fallnich, A. Studer, B.J. Ravoo, Photochemical preparation of gold nanoparticle decorated cyclodextrin vesicles with tailored plasmonic properties, Nanoscale, 11 (2019) 9384-9391.
[20] G. Wang, W. Fan, Q. Li, N. Deng, Enhanced photocatalytic New Coccine degradation and Pb(II) reduction over graphene oxide-TiO2 composite in the presence of aspartic acid-β-cyclodextrin, Chemosphere, 216 (2019) 707-714.
[21] R. Pei, L. Fan, F. Zhao, J. Xiao, Y. Yang, A. Lai, S.-F. Zhou, G. Zhan, 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal, Journal of Hazardous Materials, 384 (2020) 121418.
[22] D. Han, J. Wan, Y. Ma, Y. Wang, Y. Li, D. Li, Z. Guan, New insights into the role of organic chelating agents in Fe(II) activated persulfate processes, Chemical Engineering Journal, 269 (2015) 425-433.
[23] K.E. Manz, G. Haerr, J. Lucchesi, K.E. Carter, Adsorption of hydraulic fracturing fluid components 2-butoxyethanol and furfural onto granular activated carbon and shale rock, Chemosphere, 164 (2016) 585-592.
[24] M. Anbia, N. Mohammadi, A nanoporous adsorbent for removal of furfural from aqueous solutions, Desalination, 249 (2009) 150-153.
[25] L. Tang, J. Yu, Y. Pang, G. Zeng, Y. Deng, J. Wang, X. Ren, S. Ye, B. Peng, H. Feng, Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal, Chemical Engineering Journal, 336 (2018) 160-169.
[26] Y. Pan, Y. Wang, A. Zhou, A. Wang, Z. Wu, L. Lv, X. Li, K. Zhang, T. Zhu, Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor, Chemical Engineering Journal, 326 (2017) 454-461.
[27] J. Wang, X. Wang, G. Zhao, G. Song, D. Chen, H. Chen, J. Xie, T. Hayat, A. Alsaedi, X. Wang, Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium (VI) from aqueous solutions, Chemical Engineering Journal, 334 (2018) 569-578.
[28] B. Vellaichamy, P. Periakaruppan, B. Nagulan, Reduction of Cr6+ from wastewater using a novel in situ-synthesized PANI/MnO2/TiO2 nanocomposite: renewable, selective, stable, and synergistic catalysis, ACS Sustainable Chemistry & Engineering, 5 (2017) 9313-9324.
[29] L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review, Renewable and Sustainable Energy Reviews, 76 (2017) 1393-1421.
[30] X. Zhao, H. Xu, S. Huang, Y. You, H. Li, X. Xu, Y. Zhang, The design of a polyaniline-decorated three dimensional W18O49 composite for full solar spectrum light driven photocatalytic removal of aqueous nitrite with high N2 selectivity, Science of The Total Environment, 660 (2019) 366-374.
[31] J. Ma, J. Ding, L. Yu, L. Li, Y. Kong, S. Komarneni, Synthesis of Fe2O3–NiO–Cr2O3 composites from NiFe-layered double hydroxide for degrading methylene blue under visible light, Applied Clay Science, 107 (2015) 85-89.
[32] A. Jin, X. Liu, M. Li, Y. Jia, C. Chen, X. Chen, One-pot ionothermal synthesized carbon nitride heterojunction nanorods for simultaneous photocatalytic reduction and oxidation reactions: synergistic effect and mechanism insight, ACS Sustainable Chemistry & Engineering, 7 (2019) 5122-5133.
[33] Q. Fan, X. Chen, F. Chen, J. Tian, C. Yu, C. Liao, Regulating the stability and bandgap structure of BiOBr during thermo-transformation via La doping, Applied Surface Science, 481 (2019) 564-575.
[34] H. Abdullah, N.S. Gultom, D.-H. Kuo, Synthesis and characterization of La-doped Zn(O,S) photocatalyst for green chemical detoxification of 4-nitrophenol, Journal of hazardous materials, 363 (2019) 109-118.
[35] N.S. Gultom, H. Abdullah, D.-H. Kuo, Enhanced photocatalytic hydrogen production of noble-metal free Ni-doped Zn(O,S) in ethanol solution, international journal of hydrogen energy, 42 (2017) 25891-25902.
[36] M. He, W. Li, J. Xia, L. Xu, J. Di, H. Xu, S. Yin, H. Li, M. Li, The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid, Applied Surface Science, 331 (2015) 170-178.
[37] S. Martha, P.C. Sahoo, K. Parida, An overview on visible light responsive metal oxide based photocatalysts for hydrogen energy production, Rsc Advances, 5 (2015) 61535-61553.
[38] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chemical reviews, 110 (2010) 6503-6570.
[39] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature, 440 (2006) 295-295.
[40] H. Abdullah, D.-H. Kuo, X. Chen, High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution, International Journal of Hydrogen Energy, 42 (2017) 5638-5648.
[41] Q. Wang, Z. Liu, D. Liu, G. Liu, M. Yang, F. Cui, W. Wang, Ultrathin two-dimensional BiOBrxI1-x solid solution with rich oxygen vacancies for enhanced visible-light-driven photoactivity in environmental remediation, Applied Catalysis B: Environmental, 236 (2018) 222-232.
[42] Z. Jia, F. Wang, F. Xin, B. Zhang, Simple Solvothermal Routes to Synthesize 3D BiOBrxI1-x Microspheres and Their Visible-Light-Induced Photocatalytic Properties, Industrial & Engineering Chemistry Research, 50 (2011) 6688-6694.
[43] S. Chandrasekaran, J.S. Chung, E.J. Kim, S.H. Hur, Exploring complex structural evolution of graphene oxide/ZnO triangles and its impact on photoelectrochemical water splitting, Chemical Engineering Journal, 290 (2016) 465-476.
[44] S.N. Habisreutinger, L. Schmidt‐Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angewandte Chemie International Edition, 52 (2013) 7372-7408.
[45] N. Rahimi, R.A. Pax, E.M. Gray, Review of functional titanium oxides. I: TiO2 and its modifications, Progress in Solid State Chemistry, 44 (2016) 86-105.
[46] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Progress in solid state chemistry, 32 (2004) 33-177.
[47] S. Chandrasekaran, L. Yao, L. Deng, C. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, P. Zhang, Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond, Chemical Society Reviews, 48 (2019) 4178-4280.
[48] A.A. Ashkarran, Absence of photocatalytic activity in the presence of the photoluminescence property of Mn–ZnS nanoparticles prepared by a facile wet chemical method at room temperature, Materials science in semiconductor processing, 17 (2014) 1-6.
[49] D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, Z. Lin, ZnS nano-architectures: photocatalysis, deactivation and regeneration, Nanoscale, 2 (2010) 2062-2064.
[50] G. Ren, Z. Lin, B. Gilbert, J. Zhang, F. Huang, J. Liang, Evolution of ZnS nanostructure morphology under interfacial free-energy control, Chemistry of Materials, 20 (2008) 2438-2443.
[51] H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation, Journal of hazardous materials, 250 (2013) 370-378.
[52] C.M. Taylor, A. Ramirez-Canon, J. Wenk, D. Mattia, Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts, Journal of hazardous materials, 378 (2019) 120799.
[53] J.S. Chang, J. Strunk, M.N. Chong, P.E. Poh, J.D. Ocon, Multi-dimensional zinc oxide (ZnO) nanoarchitectures as efficient photocatalysts: What is the fundamental factor that determines photoactivity in ZnO?, Journal of hazardous materials, 381 (2020) 120958.
[54] Y. Piña-Pérez, O. Aguilar-Martínez, P. Acevedo-Peña, C. Santolalla-Vargas, S. Oros-Ruíz, F. Galindo-Hernández, R. Gómez, F. Tzompantzi, Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent, Applied Catalysis B: Environmental, 230 (2018) 125-134.
[55] H. Abdullah, D.-H. Kuo, N.S. Gultom, N=N bond cleavage of azobenzene via photocatalytic hydrogenation with Dy-doped Zn(O,S): the progress from hydrogen evolution to green chemical conversion, Catalysis Science & Technology, 9 (2019) 2651-2663.
[56] X. Chen, D.H. Kuo, J. Zhang, Q. Lu, J. Lin, Y. Liao, Tubular bimetal oxysulfide CuMgOS catalyst for rapid reduction of heavy metals and organic dyes, Applied Organometallic Chemistry, 33 (2019) e4824.
[57] L. Zhao, X. Zhang, C. Fan, Z. Liang, P. Han, First-principles study on the structural, electronic and optical properties of BiOX (X= Cl, Br, I) crystals, Physica B: Condensed Matter, 407 (2012) 3364-3370.
[58] X. Zhang, C.-Y. Wang, L.-W. Wang, G.-X. Huang, W.-K. Wang, H.-Q. Yu, Fabrication of BiOBrxI1− x photocatalysts with tunable visible light catalytic activity by modulating band structures, Scientific reports, 6 (2016) 22800.
[59] S. Garg, M. Yadav, A. Chandra, K. Hernadi, A review on BiOX (X= Cl, Br and I) nano-/microstructures for their photocatalytic applications, Journal of nanoscience and nanotechnology, 19 (2019) 280-294.
[60] Y. Yang, C. Zhang, C. Lai, G. Zeng, D. Huang, M. Cheng, J. Wang, F. Chen, C. Zhou, W. Xiong, BiOX (X= Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management, Advances in colloid and interface science, 254 (2018) 76-93.
[61] W. Zhang, Y. Sun, J. Li, W. Cen, Z. Cui, H. Huang, F. Dong, Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@ defective BiOBr hierarchical microspheres, Journal of catalysis, 357 (2018) 41-50.
[62] Q.Y. Liu, G. Han, Y.F. Zheng, X.C. Song, Synthesis of BiOBrxI1-x solid solutions with dominant exposed {001} and {110} facets and their visible-light-induced photocatalytic properties, Separation and Purification Technology, 203 (2018) 75-83.
[63] X. Ren, J. Li, X. Cao, B. Wang, Y. Zhang, Y. Wei, Synergistic effect of internal electric field and oxygen vacancy on the photocatalytic activity of BiOBrxI1-x with isomorphous fluorine substitution, Journal of colloid and interface science, 554 (2019) 500-511.
[64] Y. Waseda, E. Matsubara, K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems, Springer Science & Business Media 2011 DOI 10.1007/978-3-642-166-358.
[65] R. Sharma, D. Bisen, U. Shukla, B. Sharma, X-ray diffraction: a powerful method of characterizing nanomaterials, Recent Research in Science and Technology, 4 (2012) ISSN: 2076-5061.
[66] M.K. Næss, Synthesis and characterisationof silver substituted aluminium-phosphates: microporous materialsas possible carriers of silver nanoclusters, Norges teknisk-naturvitenskapelige universitet, Fakultet for naturvitenskap, 2009.
[67] H.J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N.J. Fullwood, B. Gardner, P.L. Martin-Hirsch, Using Raman spectroscopy to characterize biological materials, Nature protocols, 11 (2016) 664.
[68] D. Briggs, Handbook of X‐ray Photoelectron Spectroscopy CD Wanger, WM Riggs, LE Davis, JF Moulder and GE Muilenberg Perkin‐Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190 pp. $195, Surface and Interface Analysis, 3 (1981) doi.org/10.1002/sia.740030412.
[69] S. Thomas, R. Thomas, A.K. Zachariah, R. Kumar, Microscopy methods in nanomaterials characterization, Elsevier 2017 ISBN: 978-0-323-46141-2.
[70] D. Semnani, Geometrical characterization of electrospun nanofibers, Electrospun Nanofibers, Elsevier2017, pp. 151-180.
[71] K. van Benthem, S.J. Pennycook, A.Z.M.S. Rahman, Atomic Resolution Characterization of Semiconductor Materials by Aberration-Corrected Transmission Electron Microscopy, (2017).
[72] S. Sadamatsu, M. Tanaka, K. Higashida, S. Matsumura, Transmission electron microscopy of bulk specimens over 10 µm in thickness, Ultramicroscopy, 162 (2016) 10-16.
[73] G. Wypych, Handbook of material weathering, Elsevier 2018 ISBN 978-1-927885-32-1.
[74] D.R. Baer, S. Thevuthasan, Characterization of thin films and coatings, Handbook of Deposition Technologies for Films and Coatings, Elsevier 2010, pp. 749-864.
[75] K. Moran, J. Fitzgerald, D. McPartlin, J. Loftus, R. O'Kennedy, Biosensor-Based Technologies for the Detection of Pathogens and Toxins, Comprehensive Analytical Chemistry, Elsevier 2016, pp. 93-120.
[76] Q. Wang, J. Zheng, Y. He, J. Cao, X. Liu, M. Wang, J. Ma, J. Lai, H. Lu, S. Jia, Robust edge photocurrent response on layered type II Weyl semimetal WTe2, Nature Communications, 10 (2019) 1-7.
[77] A. Hankin, F.E. Bedoya-Lora, J.C. Alexander, A. Regoutz, G.H. Kelsall, Flat band potential determination: avoiding the pitfalls, Journal of Materials Chemistry A, 7 (2019) 26162-26176.
[78] M.A. Zeleke, D.-H. Kuo, K.E. Ahmed, N.S. Gultom, Facile synthesis of bimetallic (In,Ga)2(O,S)3 oxy-sulfide nanoflower and its enhanced photocatalytic activity for reduction of Cr(VI), Journal of colloid and interface science, 530 (2018) 567-578.
[79] W.L. Kebede, D.-H. Kuo, M.A. Zeleke, K.E. Ahmed, A novel Sb-doped Mo(O,S)3 oxy-sulfide photocatalyst for degradation of methylene blue dye under visible light irradiation, Journal of Alloys and Compounds, 797 (2019) 986-994.
[80] Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. Mai, N. Wang, Progress on the Photocatalytic Reduction Removal of Chromium Contamination, The Chemical Record, 19 (2019) 873-882.
[81] M. Mall, L. Kumar, Optical studies of Cd2+ and Mn2+ Co-doped ZnS nanocrystals, Journal of luminescence, 130 (2010) 660-665.
[82] R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, X-ray peak broadening analysis in ZnO nanoparticles, Solid State Communications, 149 (2009) 1919-1923.
[83] A.R. Bushroa, R. Rahbari, H.H. Masjuki, M.R. Muhamad, Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films, Vacuum, 86 (2012) 1107-1112.
[84] H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, H. Weller, Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles, Langmuir, 21 (2005) 1931-1936.
[85] E. Della Gaspera, J. Griggs, T. Ahmed, S. Walia, E.L. Mayes, A. Calzolari, A. Catellani, J. van Embden, Augmented band gap tunability in indium-doped zinc sulfide nanocrystals, Nanoscale, 11 (2019) 3154-3163.
[86] H. Zhang, J. Wang, Y. Cao, X. Guo, Q. Li, J. Du, Q. Xu, Oxygen vacancies mediated ferromagnetism in hydrogenated Zn0.9Co0.1O film, AIP Advances, 8 (2018) 056405.
[87] H. Abdullah, N.S. Gultom, D.-H. Kuo, A simple one-pot synthesis of a Zn(O,S)/Ga2O3 nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction, New Journal of Chemistry, 41 (2017) 12397-12406.
[88] G. Yang, H. Ding, D. Chen, J. Feng, Q. Hao, Y. Zhu, Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 234 (2018) 260-267.
[89] N.L. Reddy, V.N. Rao, M.M. Kumari, M. Sathish, S.M. Venkatakrishnan, Development of high quantum efficiency CdS/ZnS core/shell structured photocatalyst for the enhanced solar hydrogen evolution, International Journal of Hydrogen Energy, 43 (2018) 22315-22328.
[90] S.P. Vattikuti, P.A.K. Reddy, J. Shim, C. Byon, Synthesis of vanadium-pentoxide-supported graphitic carbon nitride heterostructure and studied their hydrogen evolution activity under solar light, Journal of Materials Science: Materials in Electronics, 29 (2018) 18760-18770.
[91] Z. Lan, Y. Yu, S. Yan, E. Wang, J. Yao, Y. Cao, Synergetic effect of N3−, In3+ and Sn4+ ions in TiO2 towards efficient visible photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 356 (2018) 132-137.
[92] M. Pal, U. Pal, J.M.G.Y. Jiménez, F. Pérez-Rodríguez, Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors, Nanoscale research letters, 7 (2012) 1.
[93] H. Abdullah, N.S. Gultom, D.-H.J.J.o.h.m. Kuo, Synthesis and characterization of La-doped Zn(O,S) photocatalyst for green chemical detoxification of 4-nitrophenol, 363 (2019) 109-118.
[94] Y. Yan, M. Han, A. Konkin, T. Koppe, D. Wang, T. Andreu, G. Chen, U. Vetter, J.R. Morante, P. Schaaf, Slightly hydrogenated TiO2 with enhanced photocatalytic performance, Journal of Materials Chemistry A, 2 (2014) 12708-12716.
[95] Y. Lei, S. Song, W. Fan, Y. Xing, H. Zhang, Facile synthesis and assemblies of flowerlike SnS2 and In3+-doped SnS2: hierarchical structures and their enhanced photocatalytic property, The Journal of Physical Chemistry C, 113 (2009) 1280-1285.
[96] H. Li, T. Wu, B. Cai, W. Ma, Y. Sun, S. Gan, D. Han, L. Niu, Efficiently photocatalytic reduction of carcinogenic contaminant Cr(VI) upon robust AgCl: Ag hollow nanocrystals, Applied Catalysis B: Environmental, 164 (2015) 344-351.
[97] D. Shao, X. Wang, Q. Fan, Photocatalytic reduction of Cr(VI) to Cr(III) in solution containing ZnO or ZSM-5 zeolite using oxalate as model organic compound in environment, Microporous and Mesoporous Materials, 117 (2009) 243-248.
[98] A. Khataee, M. Zarei, Photocatalysis of a dye solution using immobilized ZnO nanoparticles combined with photoelectrochemical process, Desalination, 273 (2011) 453-460.
[99] M. Shirzad-Siboni, M. Farrokhi, R. Darvishi Cheshmeh Soltani, A. Khataee, S. Tajassosi, Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on kaolin, Industrial & Engineering Chemistry Research, 53 (2014) 1079-1087.
[100] D.A. Reddy, J. Choi, S. Lee, R. Ma, T.K. Kim, Self-assembled macro porous ZnS–graphene aerogels for photocatalytic degradation of contaminants in water, Rsc Advances, 5 (2015) 18342-18351.
[101] K. Singh, K. Sarma, A simple and feasible approach to decorating MWCNT with Fe3O4 and ZnS and their use as a magnetically separable photocatalyst in the degradation of Cr(VI) in wastewater, Environmental Nanotechnology, Monitoring & Management, 6 (2016) 206-213.
[102] A. Hernández-Gordillo, C. García-Mendoza, M. Alvarez-Lemus, R. Gómez, Photocatalytic reduction of Cr(VI) by using stacked ZnS layers of ZnS(en)x complex, Journal of environmental chemical engineering, 3 (2015) 3048-3054.
[103] Z. Luo, J. Wang, L. Qu, J. Jia, S. Jiang, X. Zhou, X. Wu, Z.J.N.J.o.C. Wu, Visible-light-driven photocatalytic reduction of Cr(VI) on magnetite/carboxylate-rich carbon sheets, 41 (2017) 12596-12603.
[104] H. Peng, Y. Leng, Q. Cheng, Q. Shang, J. Shu, J.J.P. Guo, Efficient Removal of Hexavalent chromium from Wastewater with Electro-reduction, 7 (2019) 41.
[105] J. Li, T. Wang, X. Du, Preparation of visible light-driven SnS2/TiO2 nanocomposite photocatalyst for the reduction of aqueous Cr(VI), Separation and purification technology, 101 (2012) 11-17.
[106] Y.C. Zhang, J. Li, H.Y. Xu, One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI), Applied Catalysis B: Environmental, 123 (2012) 18-26.
[107] D.K. Padhi, K. Parida, Facile fabrication of α-FeOOH nanorod/RGO composite: a robust photocatalyst for reduction of Cr(VI) under visible light irradiation, Journal of Materials Chemistry A, 2 (2014) 10300-10312.
[108] L.-N. Liu, J.-G. Dai, T.-J. Zhao, S.-Y. Guo, D.-S. Hou, P. Zhang, J. Shang, S. Wang, S.J.R.a. Han, A novel Zn(II) dithiocarbamate/ZnS nanocomposite for highly efficient Cr6+ removal from aqueous solutions, 7 (2017) 35075-35085.
[109] R. Mu, Z. Xu, L. Li, Y. Shao, H. Wan, S. Zheng, On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction, Journal of Hazardous Materials, 176 (2010) 495-502.
[110] R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin, L. Wu, NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI), Applied Catalysis B: Environmental, 162 (2015) 245-251.
[111] X.-X. Wei, B. Cui, X. Wang, Y. Cao, L. Gao, S. Guo, C.-M. Chen, Tuning the physico-chemical properties of BiOBr via solvent adjustment: towards an efficient photocatalyst for water treatment, CrystEngComm, 21 (2019) 1750-1757.
[112] H. Huang, X. Han, X. Li, S. Wang, P.K. Chu, Y. Zhang, Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures, ACS applied materials & interfaces, 7 (2015) 482-492.
[113] K. Sharma, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, P. Singh, Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review, Journal of Industrial and Engineering Chemistry, 78 (2019) 1-20.
[114] J. Di, J. Xia, Y. Ge, L. Xu, H. Xu, J. Chen, M. He, H. Li, Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS2 coupled BiOBr microspheres, Dalton Transactions, 43 (2014) 15429-15438.
[115] J. Li, Y. Yu, L. Zhang, Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis, Nanoscale, 6 (2014) 8473-8488.
[116] J. Guo, X. Liao, M.-H. Lee, G. Hyett, C.-C. Huang, D.W. Hewak, S. Mailis, W. Zhou, Z. Jiang, Experimental and DFT insights of the Zn-doping effects on the visible-light photocatalytic water splitting and dye decomposition over Zn-doped BiOBr photocatalysts, Applied Catalysis B: Environmental, 243 (2019) 502-512.
[117] S. Yin, W. Fan, J. Di, T. Wu, J. Yan, M. He, J. Xia, H. Li, La3+ doped BiOBr microsphere with enhanced visible light photocatalytic activity, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 513 (2017) 160-167.
[118] R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C.J.S.S.C. Bose, X-ray peak broadening analysis in ZnO nanoparticles, 149 (2009) 1919-1923.
[119] S. Yin, W. Fan, J. Di, T. Wu, J. Yan, M. He, J. Xia, H. Li, La3+ doped BiOBr microsphere with enhanced visible light photocatalytic activity A Physicochemical and engineering aspects, 513 (2017) 160-167.
[120] G. Singh, S. Shrivastava, D. Jain, S. Pandya, T. Shripathi, V. Ganesan, Effect of indium doping on zinc oxide films prepared by chemical spray pyrolysis technique, Bulletin of Materials Science, 33 (2010) 581-587.
[121] Q. Sun, X. Hu, S. Zheng, J. Zhang, J. Sheng, Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@ diatomite hybrid photocatalyst for improving reduction of Cr(Ⅵ), Environmental Pollution, 245 (2019) 53-62.
[122] L.W. Duresa, D.-H. Kuo, K.E. Ahmed, M.A. Zeleke, H. Abdullah, Highly enhanced photocatalytic Cr(VI) reduction using In-doped Zn(O,S) nanoparticles, New Journal of Chemistry, 43 (2019) 8746-8754.
[123] Y. Xu, Y. Ma, H. Ji, S. Huang, M. Xie, Y. Zhao, H. Xu, H. Li, Enhanced long-wavelength light utilization with polyaniline/bismuth-rich bismuth oxyhalide composite towards photocatalytic degradation of antibiotics, Journal of colloid and interface science, 537 (2019) 101-111.
[124] S. Zhang, X. Chen, L. Song, Preparation of BiF3/BiOBr heterojunctions from microwave-assisted method and photocatalytic performances, Journal of hazardous materials, 367 (2019) 304-315.
[125] S. Jaiswar, K. Mandal, Evidence of enhanced oxygen vacancy defects inducing ferromagnetism in multiferroic CaMn7O12 manganite with sintering time, The Journal of Physical Chemistry C, 121 (2017) 19586-19601.
[126] S. Issarapanacheewin, K. Wetchakun, S. Phanichphant, W. Kangwansupamonkon, N. Wetchakun, Efficient photocatalytic degradation of Rhodamine B by a novel CeO2/Bi2WO6 composite film, Catalysis Today, 278 (2016) 280-290.
[127] C. Tan, G. Zhu, M. Hojamberdiev, K. Okada, J. Liang, X. Luo, P. Liu, Y. Liu, Co3O4 nanoparticles-loaded BiOCl nanoplates with the dominant {001} facets: efficient photodegradation of organic dyes under visible light, Applied Catalysis B: Environmental, 152 (2014) 425-436.
[128] K. Liu, X. Zhang, C. Zhang, G. Ren, Z. Zheng, Z. Lv, C. Fan, Enhanced photocatalytic reduction of CO2 to CO over BiOBr assisted by phenolic resin-based activated carbon spheres, RSC Advances, 9 (2019) 14391-14399.
[129] Z. Wu, X. Yuan, H. Zhong, H. Wang, L. Jiang, L. Leng, H. Wang, G. Zeng, Z. Liu, Effective removal of high-chroma rhodamine B over Sn0.215In0.38S/reduced graphene oxide composite: Synergistic factors and mechanism of adsorption enrichment and visible photocatalytic degradation, Powder Technology, 329 (2018) 217-231.
[130] F.T. Bekena, H. Abdullah, D.-H. Kuo, M.A. Zeleke, Photocatalytic Reduction of 4-nitrophenol Using Effective Hole Scavenger Over Novel Mg-doped Zn(O,S) Nanoparticles, Journal of Industrial and Engineering Chemistry, 78 (2019) 116-124.
[131] Q. Wang, H. Wu, Q. Gao, D. Lin, Y. Fan, R. Duan, Y. Cong, Y. Zhang, Fabrication of visible-light-active Bi/BiOI-Bi2O3 composite with enhanced photocatalytic activity, Journal of colloid and interface science, 548 (2019) 255-264.
[132] L. Lin, M. Huang, L. Long, Z. Sun, W. Zheng, D. Chen, Fabrication of a three-dimensional BiOBr/BiOI photocatalyst with enhanced visible light photocatalytic performance, Ceramics International, 40 (2014) 11493-11501.
[133] M. Song, M. Du, Q. Liu, F. Xing, C. Huang, X. Qiu, Enhancement of photocatalytic activities in hierarchical BiOBr microflowers induced by oxygen vacancies, Catalysis Today, 335 (2019) 193-199.
[134] F. Qiu, W. Li, F. Wang, H. Li, X. Liu, J. Sun, In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light, Journal of colloid and interface science, 493 (2017) 1-9.
[135] S. Li, J. Chen, W. Jiang, Y. Liu, Y. Ge, J. Liu, Facile construction of flower-like bismuth oxybromide/bismuth oxide formate pn heterojunctions with significantly enhanced photocatalytic performance under visible light, Journal of colloid and interface science, 548 (2019) 12-19.
[136] C. Zhao, Y. Liang, W. Li, Y. Tian, X. Chen, D. Yin, Q. Zhang, BiOBr/BiOCl/carbon quantum dot microspheres with superior visible light-driven photocatalysis, RSC Advances, 7 (2017) 52614-52620.
[137] J. Li, Q. Zhou, F. Yang, L. Wu, W. Li, R. Ren, Y. Lv, Uniform flower-like BiOBr/BiOI prepared by a new method: visible-light photocatalytic degradation, influencing factors and degradation mechanism, New Journal of Chemistry, 43 (2019) 14829-14840.
[138] Y. Ren, Y. Yang, X. Jing, X. Wang, H. Song, Facile one step solvothermal synthesis and high visible light photocatalytic property of flower-like Bi2O3/BiOBr microspheres, Materials Letters, (2019) 126681.
[139] X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, G.-M. Zeng, A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight, Applied Catalysis B: Environmental, 221 (2018) 701-714.
[140] P. Kwolek, K. Szaciłowski, Photoelectrochemistry of n-type bismuth oxyiodide, Electrochimica Acta, 104 (2013) 448-453.
[141] X. Liu, Z. Zhou, Y. Lu, T. Wang, P. Huo, Y. Yan, Increasing visible-light absorption for photocatalysis with black 2D Bi4Ti3O12 nanosheets, Advanced Powder Technology, 30 (2019) 1043-1050.
[142] J. Li, F. Yang, Q. Zhou, R. Ren, L. Wu, Y. Lv, A regularly combined magnetic 3D hierarchical Fe3O4/BiOBr heterostructure: Fabrication, visible-light photocatalytic activity and degradation mechanism, Journal of colloid and interface science, 546 (2019) 139-151.
[143] D. Wang, S.C. Pillai, S.-H. Ho, J. Zeng, Y. Li, D.D. Dionysiou, Plasmonic-based nanomaterials for environmental remediation, Applied Catalysis B: Environmental, 237 (2018) 721-741.
[144] M. Yuan, F. Tian, G. Li, H. Zhao, Y. Liu, R. Chen, Fe(III)-modified BiOBr hierarchitectures for improved photocatalytic benzyl alcohol oxidation and organic pollutants degradation, Industrial & Engineering Chemistry Research, 56 (2017) 5935-5943.
[145] H. Wang, L. Zhao, X. Liu, J. Xu, W. Hou, J. Wang, E. He, R. Zhang, H. Zhang, Novel hydrogen bonding composite based on copper phthalocyanine/perylene diimide derivatives pn heterojunction with improved photocatalytic activity, Dyes and Pigments, 137 (2017) 322-328.
[146] M. Gao, D. Zhang, X. Pu, H. Li, D. Lv, B. Zhang, X. Shao, Facile hydrothermal synthesis of Bi/BiOBr composites with enhanced visible-light photocatalytic activities for the degradation of rhodamine B, Separation and Purification Technology, 154 (2015) 211-216.
[147] Q. Hu, M. Ji, J. Di, B. Wang, J. Xia, Y. Zhao, H. Li, Ionic liquid-induced double regulation of carbon quantum dots modified bismuth oxychloride/bismuth oxybromide nanosheets with enhanced visible-light photocatalytic activity, Journal of colloid and interface science, 519 (2018) 263-272.
[148] M.N. Joubani, M. Zanjanchi, S. Sohrabnezhad, The carboxylate magnetic–Zinc based metal-organic framework heterojunction: Fe3O4-COOH@ ZIF-8/Ag/Ag3PO4 for plasmon enhanced visible light Z-scheme photocatalysis, Advanced Powder Technology, 31 (2020) 29-39.
[149] M.M. Bello, A.A.A. Raman, M. Purushothaman, Applications of fluidized bed reactors in wastewater treatment–A review of the major design and operational parameters, Journal of cleaner production, 141 (2017) 1492-1514.
[150] M.S.A.C. Mansor, M.N.I. Amir, N.M. Julkapli, A. Ma'amor, Gold hybrid nanomaterials: Prospective on photocatalytic activities for wastewater treatment application, Materials Chemistry and Physics, (2019) 122415.
[151] M. Zayat, P. Garcia-Parejo, D. Levy, Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating, Chemical Society Reviews, 36 (2007) 1270-1281.
[152] X. Meng, Z. Zhang, Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches, Journal of Molecular Catalysis A: Chemical, 423 (2016) 533-549.
[153] C. Dong, S. Lu, S. Yao, R. Ge, Z. Wang, Z. Wang, P. An, Y. Liu, B. Yang, H. Zhang, Colloidal synthesis of ultrathin monoclinic BiVO4 nanosheets for Z-scheme overall water splitting under visible light, ACS Catalysis, 8 (2018) 8649-8658.
[154] J. Guo, L. Shi, J. Zhao, Y. Wang, K. Tang, W. Zhang, C. Xie, X. Yuan, Enhanced visible-light photocatalytic activity of Bi2MoO6 nanoplates with heterogeneous Bi2MoO6-x@ Bi2MoO6 core-shell structure, Applied Catalysis B: Environmental, 224 (2018) 692-704.
[155] B.Y. Alfaifi, A.A. Tahir, K.U. Wijayantha, Fabrication of Bi2WO6 photoelectrodes with enhanced photoelectrochemical and photocatalytic performance, Solar Energy Materials and Solar Cells, 195 (2019) 134-141.
[156] Z. Wei, Y. Liu, J. Wang, R. Zong, W. Yao, J. Wang, Y. Zhu, Controlled synthesis of a highly dispersed BiPO4 photocatalyst with surface oxygen vacancies, Nanoscale, 7 (2015) 13943-13950.
[157] M. Jalalah, M. Faisal, H. Bouzid, J.-G. Park, S. Al-Sayari, A.A. Ismail, Comparative study on photocatalytic performances of crystalline α-and β-Bi2O3 nanoparticles under visible light, Journal of Industrial and Engineering Chemistry, 30 (2015) 183-189.
[158] R. Li, H. Ren, W. Ma, S. Hong, L. Wu, Y. Huang, Synthesis of BiOBr microspheres with ethanol as self-template and solvent with controllable morphology and photocatalytic activity, Catalysis Communications, 106 (2018) 1-5.
[159] D. Cui, L. Wang, K. Xu, L. Ren, L. Wang, Y. Yu, Y. Du, W. Hao, Band-gap engineering of BiOCl with oxygen vacancies for efficient photooxidation properties under visible-light irradiation, Journal of Materials Chemistry A, 6 (2018) 2193-2199.
[160] X. Ren, J. Yao, L. Cai, J. Li, X. Cao, Y. Zhang, B. Wang, Y. Wei, Band gap engineering of BiOI via oxygen vacancies induced by graphene for improved photocatalysis, New Journal of Chemistry, 43 (2019) 1523-1530.
[161] H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets, Journal of the American Chemical Society, 137 (2015) 6393-6399.
[162] A. Najafidoust, M. Haghighi, E.A. Asl, H. Bananifard, Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes, Separation and Purification Technology, 221 (2019) 101-113.
[163] Y. Sun, Z. Zhao, W. Zhang, C. Gao, Y. Zhang, F. Dong, Plasmonic Bi metal as cocatalyst and photocatalyst: the case of Bi/(BiO)2CO3 and Bi particles, Journal of colloid and interface science, 485 (2017) 1-10.
[164] Z. Liu, G. Wang, P. Yang, Selected growth of second phase on BiOBr facets via spatial charge separation towards enhanced photocatalysis activity, Journal of Industrial and Engineering Chemistry, 66 (2018) 262-268.
[165] Y. Lei, G. Wang, P. Guo, H. Song, The Ag-BiOBrxI1- x composite photocatalyst: Preparation, characterization and their novel pollutants removal property, Applied Surface Science, 279 (2013) 374-379.
[166] H. Li, Z. Yang, J. Zhang, Y. Huang, H. Ji, Y. Tong, Indium doped BiOI nanosheets: Preparation, characterization and photocatalytic degradation activity, Applied Surface Science, 423 (2017) 1188-1197.
[167] L. Kong, J. Guo, J.W. Makepeace, T. Xiao, H.F. Greer, W. Zhou, Z. Jiang, P.P. Edwards, Rapid synthesis of BiOBrxI1-x photocatalysts: Insights to the visible-light photocatalytic activity and strong deviation from Vegard’s law, Catalysis Today, 335 (2019) 477- 484.
[168] X. Shi, P. Wang, W. Li, Y. Bai, H. Xie, Y. Zhou, L. Ye, Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3–adsorption, Applied Catalysis B: Environmental, 243 (2019) 322-329.
[169] N.S. Bisht, D. Pancholi, N.G. Sahoo, A.B. Melkani, S. Mehta, A. Dandapat, Effect of Ag–Fe–Cu tri-metal loading in bismuth oxybromide to develop a novel nanocomposite for the sunlight driven photocatalytic oxidation of alcohols, Catalysis Science & Technology, 9 (2019) 3923-3932.
[170] Y. Chang, D. Kuo, Effect of incorporating nonlanthanoidal indium on the ferroelectric performance of Bi4Ti3O12 thin films, Applied physics letters, 89 (2006) 072903.
[171] J. Lu, Q. Meng, H. Lv, L. Shui, M. Jin, Z. Zhang, Z. Chen, M. Yuan, X. Wang, J.-M. Liu, Synthesis of visible-light-driven BiOBrxI1-x solid solution nanoplates by ultrasound-assisted hydrolysis method with tunable bandgap and superior photocatalytic activity, Journal of Alloys and Compounds, 732 (2018) 167-177.
[172] K. Mahmood, S.B. Park, H.J. Sung, Retracted Article: Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures, Journal of Materials Chemistry C, 1 (2013) 3138-3149.
[173] L. Kong, J. Guo, J.W. Makepeace, T. Xiao, H.F. Greer, W. Zhou, Z. Jiang, P.P. Edwards, Rapid synthesis of BiOBrxI1-x photocatalysts: Insights to the visible-light photocatalytic activity and strong deviation from Vegard’s law, Catalysis Today, 335 (2019) 477-484.
[174] Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation, Applied Catalysis B: Environmental, 220 (2018) 290-302.
[175] W. An, W. Cui, Y. Liang, J. Hu, L. Liu, Surface decoration of BiPO4 with BiOBr nanoflakes to build heterostructure photocatalysts with enhanced photocatalytic activity, Applied Surface Science, 351 (2015) 1131-1139.
[176] D. Wu, L. Ye, H.Y. Yip, P.K. Wong, Organic-free synthesis of {001} facet dominated BiOBr nanosheets for selective photoreduction of CO2 to CO, Catalysis Science & Technology, 7 (2017) 265-271.
[177] H. Li, H. Yu, X. Quan, S. Chen, Y. Zhang, Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (Metal= Cu, Ag, Au), ACS applied materials & interfaces, 8 (2016) 2111-2119.
[178] X. Sun, M. Wang, N. Qian, X. Sun, C. Liu, X. Zhang, R. Rao, Y. Ma, Ultra-fine BiOCl nanoparticles: Unprecedented synthesis and rich surface-dependent properties, Applied Surface Science, 489 (2019) 1030-1041.
[179] Z. Wang, K. Wang, Y. Li, L. Jiang, G. Zhang, Novel BiSbO4/BiOBr nanoarchitecture with enhanced visible-light driven photocatalytic performance: oxygen-induced pathway of activation and mechanism unveiling, Applied Surface Science, 498 (2019) 143850.
[180] X. Xie, Y. Liu, X. Dong, C. Lin, X. Wen, Q. Yan, Synthesis and characterization of Fe3O4/BiOI np heterojunction magnetic photocatalysts, Applied Surface Science, 455 (2018) 742-747.
[181] H. Song, R. Wu, J. Yang, J. Dong, G. Ji, Fabrication of CeO2 nanoparticles decorated three-dimensional flower-like BiOI composites to build pn heterojunction with highly enhanced visible-light photocatalytic performance, Journal of colloid and interface science, 512 (2018) 325-334.
[182] J. Li, F. Yang, Q. Zhou, L. Wu, W. Li, R. Ren, Y. Lv, Visible-light photocatalytic performance, recovery and degradation mechanism of ternary magnetic Fe3O4/BiOBr/BiOI composite, RSC advances, 9 (2019) 23545-23553.
[183] M. Yadav, S. Garg, A. Chandra, K. Hernadi, Fabrication of leaf extract mediated bismuth oxybromide/oxyiodide (BiOBrxI1-x) photocatalysts with tunable band gap and enhanced optical absorption for degradation of organic pollutants, Journal of colloid and interface science, 555 (2019) 304-314.
[184] H. Lin, H. Ye, X. Li, J. Cao, S. Chen, Facile anion-exchange synthesis of BiOI/BiOBr composite with enhanced photoelectrochemical and photocatalytic properties, Ceramics International, 40 (2014) 9743-9750.
[185] B. Ge, L. Han, X. Liang, F. Li, X. Pu, X. Zhu, Z. Zhang, X. Shao, C. Jin, W. Li, Fabrication of superhydrophobic Cu-BiOBr surface for oil/water separation and water soluble pollutants degradation, Applied Surface Science, 462 (2018) 583-589.
[186] X. Jia, J. Cao, H. Lin, M. Zhang, X. Guo, S. Chen, Novel I-BiOBr/BiPO4 heterostructure: synergetic effects of I− ion doping and the electron trapping role of wide-band-gap BiPO4 nanorods, RSC advances, 6 (2016) 55755-55763.
[187] J. Kim, C.W. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light, Environmental science & technology, 44 (2010) 6849-6854.

無法下載圖示 全文公開日期 2023/07/23 (校內網路)
全文公開日期 2025/07/23 (校外網路)
全文公開日期 2023/07/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE