簡易檢索 / 詳目顯示

研究生: 盧家彥
Jia-Yan Lu
論文名稱: 9Cr-1Mo鋼熱浸鍍鋁後於 氯化鈉/硫酸鈉熱腐蝕環境之高溫潛變
The High-temperature Creep of 9Cr-1Mo Steel with Hot-dipped Aluminum in NaCl/Na2SO4 Hot-corrosion Environments
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 曾傳銘
Chuan-Ming Tseng
鄭偉鈞
Wei-Chun Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 9Cr-1Mo鋼高溫機械性質熱浸鍍鋁熱腐蝕潛變
外文關鍵詞: 9Cr-1Mo steel, High temperature mechanical property, Hot dip aluminizing, Hot corrosion, Creep
相關次數: 點閱:244下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對9Cr-1Mo鋼裸材、9Cr-1Mo鋼熱浸鍍鋁材及經750 ℃ 熱處理後之9Cr-1Mo鋼熱浸鍍鋁材,進行750 ℃ 高溫拉伸及熱腐蝕潛變試驗,探討不同條件之9Cr-1Mo鋼高溫機械性質及熱腐蝕環境之潛變行為。
實驗結果顯示,9Cr-1Mo鋼於750 ℃ 高溫潛變下,析出物明顯成長粗化,促使板狀麻田散體邊界遷移,使材料硬度降低。於熱腐蝕環境,鋼料受腐蝕鹽攻擊產生之內侵蝕孔洞不會影響材料潛變壽命,但在最後發生頸縮時會加速潛變孔洞連結,使材料伸長率下降。試片經熱浸鍍鋁後,鋁層有效提升材料抗腐蝕能力,使試片伸長率維持。但由於鋁化層之高溫強度低於9Cr-1Mo鋼,且鋁化層形成的過程造成9Cr-1Mo鋼截面積減薄,使試片熱腐蝕潛變壽命減少6小時。試片熱浸鍍鋁後經熱處理,因Fe / Al交互擴散形成微孔洞,於後續潛變過程容易產生裂口,降低鋁化層與底材之附著性,因此熱腐蝕潛變壽命較熱浸鍍鋁材減少1小時。


The aim of this study was to investigate high temperature mechanical property and hot corrosion creep resistance of 9Cr-1Mo steel, hot-dip aluminized 9Cr-1Mo steel, and heat-treated after hot-dip aluminized. The experiment was conducted in 750 °C high temperature tensile and hot corrosion creep test.
The experimental results show that under high temperature creep test of 750 °C, precipitation of 9Cr-1Mo steel obviously grows and coarsens, which promotes the migration of lath martensite grain boundary. Thus the hardness of the material was reduced. In a hot corrosive environment, the internal erosion of the steel caused by the corrosion does not affect the creep life. But in the final necking it will accelerate the connection of the pore, so that cause the decreased of the elongation. After the hot-dip aluminizing of the 9Cr-1Mo steel, the aluminide coating highly improved the corrosion resistance, therefore maintaining elongation. However, since the high-temperature strength of the aluminized coating is lower than the 9Cr-1Mo steel, the process of forming the aluminized layer in the hot-dip aluminum causes the cross-sectional area of the 9Cr-1Mo steel to be thinned, so the hot corrosion creep life was reduced by 6 hours. After hot-dip aluminizing and heat-threated, micropores are formed by Fe/Al interdiffusion. It is easy to produce cracks in the subsequent creep process and reduce the adhesion between the aluminized layer and the substrate. Therefore, the hot corrosion creep life is reduced by one hour compare to hot-dip aluminizing specimen.

第一章 前言 1 第二章 文獻回顧 3 2.1 9Cr-1Mo合金鋼 3 2.1.1 合金元素之作用 4 2.1.2 微觀結構 6 2.1.2 析出物型態 7 2.2 潛變 9 2.2.1 潛變曲線 9 2.1.2 潛變機制 11 2.2.3 9Cr-1Mo鋼潛變性質 13 2.2.4 Larson-Miller 壽命評估 14 2.3 熱腐蝕 15 2.3.1 熔鹽熱腐蝕 15 2.3.2 NaCl / Na2SO4混合鹽之熱腐蝕 17 2.4 熱浸鍍鋁 20 2.4.1 熱浸鍍鋁技術 20 2.4.2 熱浸鍍鋁之鋁化層 21 2.4.3 熱浸鍍鋁後高溫擴散與孔洞之生成 23 第三章 實驗方法 25 3.1 實驗流程 25 3.2 實驗材料製備及前置處理 26 3.2.1 試片製備 26 3.2.2 熱浸鍍鋁製程 27 3.2.3 熱浸鍍鋁後熱處理 27 3.3 高溫回火試驗 29 3.4 高溫拉伸試驗 30 3.5 潛變試驗 31 3.5.1 高溫潛變試驗 31 3.5.2 熱腐蝕潛變試驗 31 3.6 分析設備與方法 33 3.6.1 分析設備 33 3.6.2 分析方法 34 第四章 實驗結果 35 4.1 9Cr-1Mo鋼熱浸鍍鋁 35 4.1.1 熱浸鍍鋁塗層之截面金相 35 4.1.2 熱浸鍍鋁塗層經熱處理後之截面金相 36 4.2 9Cr-1Mo鋼高溫熱處理後相變及微硬度 39 4.3 9Cr-1Mo鋼高溫機械性質 43 4.4 9Cr-1Mo鋼高溫潛變試驗 49 4.4.1 9Cr-1Mo鋼高溫氧化潛變試驗 49 4.4.2 9Cr-1Mo鋼熱腐蝕潛變試驗 53 4.5 9Cr-1Mo鋼熱浸鍍鋁後熱腐蝕潛變試驗 58 第五章 討論 63 5.1 高溫潛變過程中底材之弱化 65 5.2 裸材熱腐蝕環境之潛變 66 5.3 熱浸鍍鋁於熱腐蝕環境潛變之作用 67 5.3.1 9Cr-1Mo鋼熱浸鍍鋁材 67 5.3.2 熱浸鍍鋁後經熱處理之作用 68 第六章 結論 69 參考文獻 70

[1] C. Pandey, A. Giri, and M. M. Mahapatra, "Effect of normalizing temperature on microstructural stability and mechanical properties of creep strength enhanced ferritic P91 steel," Materials Science and Engineering: A, vol. 657, pp. 173-184, 2016.
[2] A. Shibli and F. Starr, "Some aspects of plant and research experience in the use of new high strength martensitic steel P91," International Journal of Pressure Vessels and Piping, vol. 84, no. 1, pp. 114-122, 2007.
[3] A. Czyrska-Filemonowicz, A. Zielińska-Lipiec, and P. Ennis, "Modified 9% Cr steels for advanced power generation: microstructure and properties," Journal of achievements in materials and manufacturing engineering, vol. 19, no. 2, pp. 43-48, 2006.
[4] P. S. Weitzel, "Steam Generator for Advanced Ultra Supercritical Power Plants 700 °C to 760 °C," no. 44595, pp. 281-291, 2011.
[5] G. Y. Lai, "High-corrosion of Engineering Alloys," ASM International, p. 154, 1990.
[6] R. A. Rapp, "Hot corrosion of materials: a fluxing mechanism," Corrosion Science, vol. 44, no. 2, pp. 209-221, 2002/02/01/ 2002.
[7] Y. Bourhis and C. S. John, "Na2SO4-and NaCl-Induced hot corrosion of six nickel-base superalloys," Oxidation of Metals, vol. 9, no. 6, pp. 507-528, 1975.
[8] Y. Ruan, N. Yan, H. Z. Zhu, K. Zhou, and B. Wei, "Thermal performance determination of binary Fe-Al alloys at elevated temperatures," Journal of Alloys and Compounds, vol. 701, pp. 676-681, 2017.
[9] A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari, "Kinetic interactions between solid iron and molten aluminium," Materials Science and Engineering: A, vol. 363, no. 1, pp. 53-61, 2003.
[10] 黃秉毅, "低碳鋼熱浸鍍鋁及銲接之高溫疲勞," 國立台灣科技大學機械所碩士論文, 民國105年.
[11] 賴立霖, "熱浸鍍鋁A36低碳鋼銲接件於氯化鈉/硫酸鈉熱腐蝕環境之高溫潛變," 國立台灣科技大學機械所碩士論文, 民國107年.
[12] Y. Fukuda and M. Shimizu, "Hot corrosion and steam oxidation properties of new heat resistant steels for ultra super critical boilers," in Materials science forum, , vol. 522, pp. 189-196, 2006.
[13] P. Ennis and A. Czyrska-Filemonowicz, "Recent advances in creep-resistant steels for power plant applications," Sadhana, vol. 28, no. 3-4, pp. 709-730, 2003.
[14] Y. Wang, K-H. Mayer, A. Scholz, C. Berger, H. Chilukuru, K. Durst, and W. Blum, "Development of new 11% Cr heat resistant ferritic steels with enhanced creep resistance for steam power plants with operating steam temperatures up to 650 °C," Materials Science and Engineering: A, vol. 510, pp. 180-184, 2009.
[15] X. Y. Liu and T. Fujita, "Effect of chromium content on creep rupture properties of a high chromium ferritic heat resisting steel," ISIJ International, vol. 29, no. 8, pp. 680-686, 1989.
[16] J. Purmenský, V. Foldyna, and Z. Kubon, "Creep resistance and structural stability of low-alloy CrMo and CrMoV steels," in Key Engineering Materials, 2000, vol. 171, pp. 419-426: Trans Tech Publ.
[17] T. Muraki, Y. Hasegawa, and M. Ohgami, "Creep Strengthening Mechanism of Mo and W in 9% Cr Heat Resistant Steels," Key Engineering Materials, vol. 171-174, pp. 499-504, 1999.
[18] G. Eggeler, J. Earthman, N. Nilsvang, and B. Ilschner, "Microstructural study of creep rupture in a 12% chromium ferritic steel," Acta Metallurgica, vol. 37, no. 1, pp. 49-60, 1989.
[19] C. Pandey, M. M. Mahapatra, P. Kumar, and N. Saini, "Some studies on P91 steel and their weldments," Journal of Alloys and Compounds, vol. 743, pp. 332-364, 2018.
[20] A. Inoue and T. Masumoto, "Carbide reactions (M3C → M7C3 → M 23C6 → M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels," Metallurgical Transactions A, vol. 11, no. 5, pp. 739-747, 1980.
[21] L. Kral, J. Čermak, and P. Kral, "The changes in structure of steel P91 after short annealings," 2015.
[22] C. Pandey, M. Mahapatra, P. Kumar, N. Saini, and J. Thakre, "Nano-size particle evolution during heat treatment of P91 steel and their effect on micro hardness," Transactions of the Indian Institute of Metals, pp. 1-8, 2017.
[23] N. G. Peng, B. Ahmad, M. R. Muhamad, and M. Ahadlin, "Phase Transformation of P91 Steels upon Cooling after Short Term Overheating above AC1 and AC3 Temperature," Advanced Materials Research, vol. 634-638, pp. 1756-1765, 2013.
[24] S. Haribabu, C. Sudha, S. Raku, RN. Hajir, R. Mythili, J. Jayaraj, S. Murgugesan, and S, Saroja, "Effect of Al Addition on the Microstructure and Phase Stability of P91 Ferritic-Martensitic Steel," Metallurgical and Materials Transactions A, vol. 50, no. 3, pp. 1421-1436, 2019.
[25] V. T. Paul, S. Saroja, and M. Vijayalakshmi, "Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures," Journal of Nuclear Materials, vol. 378, no. 3, pp. 273-281, 2008.
[26] V. Vodarek and A. Strang, "Compositional changes in minor phases present in 12CrMoVNb steels during thermal exposure at 550 °C and 600 °C," Materials science and technology, vol. 16, no. 10, pp. 1207-1213, 2000.
[27] Y. Wang, R. Kannan, and L. Li, "Characterization of as-welded microstructure of heat-affected zone in modified 9Cr–1Mo–V–Nb steel weldment," Materials Characterization, vol. 118, pp. 225-234, 2016.
[28] K. Maruyama, K. Sawada, and J.-i. Koike, "Strengthening mechanisms of creep resistant tempered martensitic steel," ISIJ international, vol. 41, no. 6, pp. 641-653, 2001.
[29] T. Onizawa, T. Wakai, M. Ando, and K. Aoto, "Effect of V and Nb on precipitation behavior and mechanical properties of high Cr steel," Nuclear Engineering and Design, vol. 238, no. 2, pp. 408-416, 2008.
[30] W. B. Jones, C. Hills, and D. Polonis, "Microstructural evolution of modified 9Cr-1Mo steel," Metallurgical Transactions A, vol. 22, no. 5, pp. 1049-1058, 1991.
[31] C. Pandey, M. Mahapatra, P. Kumar, R. Vidyrathy, and A. Srivastava, "Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel," Materials Science and Engineering: A, vol. 695, pp. 291-301, 2017.
[32] G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak, "Quantification of the Laves phase in advanced 9–12% Cr steels using a standard SEM," Materials characterization, vol. 51, no. 5, pp. 341-352, 2003.
[33] K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, and R. Komine, "Effect of W on recovery of lath structure during creep of high chromium martensitic steels," Materials Science and Engineering: A, vol. 267, no. 1, pp. 19-25, 1999.
[34] H. K. Danielsen and J. Hald, "On the nucleation and dissolution process of Z-phase Cr (V, Nb) N in martensitic 12% Cr steels," Materials Science and Engineering: A, vol. 505, no. 1-2, pp. 169-177, 2009.
[35] P. Agyakwa, "Creep and microstructural development in P91 weldments at elevated temperature," Nottingham, 2004.
[36] C. Panait, W. Bendick, A. Fuchsmann, A.-F. Gourgues-Lorenzon, and J. Besson, "Study of the microstructure of the Grade 91 steel after more than 100,000 h of creep exposure at 600 °C," International journal of pressure vessels and piping, vol. 87, no. 6, pp. 326-335, 2010.
[37] K. Sawada, M. Taneike, K. Kimura, and F. Abe, "In situ observation of recovery of lath structure in 9% chromium creep resistant steel," Materials Science and Technology, vol. 19, no. 6, pp. 739-742, 2003.
[38] K. Sawada, M. Kouichi , H. Yuki, and T. Muraki, "Creep Life Assessment of High Chromium Ferritic Steels by Recovery of Martensitic Lath Structure," Key Engineering Materials, vol. 171-174, pp. 109-114, 2000.
[39] H. Okamura, R. Ohtani, K. Satio, K. Kimura, and R. Ishii, "Basic investigation for life assessment technology of modified 9Cr–1Mo steel," Nuclear Engineering and Design, vol. 193, no. 3, pp. 243-254, 1999.
[40] K. Sawada, H. Kushima, M. Tabuchi, and K. Kimura, "Microstructural degradation of Gr.91 steel during creep under low stress," Materials Science and Engineering: A, vol. 528, no. 16, pp. 5511-5518, 2011.
[41] M. Tamura, F. Abe, K. Shiba, H. Sakasegawa, and H. Tanigawa, "Larson–Miller Constant of Heat-Resistant Steel," Metallurgical and Materials Transactions A, vol. 44, no. 6, pp. 2645-2661, 2013/06/01 .
[42] S. Mahajan and R. Chhibber, "Hot corrosion studies of boiler steels exposed to different molten salt mixtures at 950 °C," Engineering Failure Analysis, vol. 99, pp. 210-224, 2019.
[43] Y. Niu, F. Gesmundo, F. Viani, and W. Wu, "The corrosion of Ni 3 Al in a combustion gas with and without Na2SO4-NaCl deposits at 600-800 °C," Oxidation of Metals, Article vol. 42, no. 3-4, pp. 265-284, 1994.
[44] D. M. Johnson, D. P. Whittle, and J. Stringer, "Mechanisms of Na2SO4-induced accelerated oxidation," Corrosion Science, vol. 15, no. 6, pp. 721-739, 1975.
[45] 蘇永華, "鐵基合金於氯化鈉 硫酸鈉 混合鹽之熱腐蝕," 國立台灣科技大學機械所碩士論文, 民國88年.
[46] D. Lindberg, R. Backman, and P. Chartrand, "Thermodynamic evaluation and optimization of the (NaCl + Na2SO + Na2CO3 + KCl + K2SO4 + K2CO3) system," The Journal of Chemical Thermodynamics, vol. 39, no. 7, pp. 1001-1021, 2007.
[47] F. Barbier, D. Manuelli, and K. Bouché, "Characterization of aluminide coatings formed on 1.4914 and 316L steels by hot-dipping in molten aluminium," Scripta Materialia, vol. 36, no. 4, pp. 425-431, 1997.
[48] W.-J. Cheng and C.-J. Wang, "Effect of chromium on the formation of intermetallic phases in hot-dipped aluminide Cr–Mo steels," Applied Surface Science, vol. 277, pp. 139-145, 2013/07/15/ 2013.
[49] A. Bahadur and O. N. Mohanty, "Structural Studies of Hot Dip Aluminized Coatings on Mild Steel," Materials Transactions, JIM, vol. 32, no. 11, pp. 1053-1061, 1991.
[50] F. Barbier, D. Manuelli, and K. Bouche, "Characterization of aluminide coatings formed on 1.4914 and 316L steels by hot-dipping in molten aluminium," Scripta Materialia, vol. 36, no. 4, pp. 425-431, 1997.
[51] 鄭維仁, "鉻鉬鋼熱浸鋁矽後鋁化層之顯微結構與高溫相變化行為," 國立台灣科技大學機械所博士論文, 民國101年.
[52] 滿志謙, "高溫應力對低碳鋼熱浸鍍鋁層之影響," 國立台灣科技大學機械所碩士論文, 民國98年.
[53] 朱慶霖, "高溫熱應力對異質銲接件熱浸鍍鋁層之破壞機制," 台灣科技大學機械所碩士論文, 民國104年.
[54] R. Swindeman, M. Santella, P. Maziasz, B. Roberts, and K. Coleman, "Issues in replacing Cr–Mo steels and stainless steels with 9Cr–1Mo–V steel," International Journal of Pressure Vessels and Piping, vol. 81, no. 6, pp. 507-512, 2004.
[55] Z. Shang, J. Ding, C. Fan, M. Song, J. Li, Q. Li, S. Xue, K. T. Hartwig, and X. Zhang, "Tailoring the strength and ductility of T91 steel by partial tempering treatment," Acta Materialia, vol. 169, pp. 209-224, 2019.
[56] J. Sun, E. Chang, C. Chao, and M. Cheng, "The spalling modes and degradation mechanism of ZrO2-8 wt.% Y2O3 / CVD-Al2O3 / Ni-22Cr-10Al-1Y thermal-barrier coatings," Oxidation of metals, vol. 40, no. 5-6, pp. 465-481, 1993.

QR CODE