簡易檢索 / 詳目顯示

研究生: 邱鈞謙
Chun-Chien Chiu
論文名稱: 氟化聚醯亞胺合成與應用於無陽極電池抑制鋰枝晶生長提升循環性能之研究
Synthesis of fluorinated polyimide and its application to anode-free battery for inhibiting lithium dendrites growth and improving cycling performance
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
口試委員: 吳溪煌
She-huang Wu
王迪彥
Di-Yan Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 167
中文關鍵詞: 氟化聚醯亞胺無陽極電池人造固態電解質界面隔離膜鋰枝晶靜電紡絲
外文關鍵詞: fluorinated polyimide, anode-free cells, artificial solid electrolyte interface, separators, lithium dendrites, electrospinning
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要以合成氟化聚醯亞胺應用於無陽極鋰離子電池中,目的在設計出不同官能基比的氟化聚醯亞胺進行銅箔與隔離膜的改質,透過高機械強度、高熱穩定性與高潤濕性的高分子塗層解決無陽極電池所面臨的問題。
本研究主要分為三個部分進行,首先是探討自行合成出的氟化聚醯亞胺,探討其結構合成、機械強度、黏度、熱穩定性等;其二是透過旋塗技術與靜電紡絲技術製備氟化聚醯亞胺的塗層,改善陽極基材並用於無陽極電池中;其三是透過氟化聚醯亞胺進行隔離膜的改質,改善原先商用隔離膜的問題,並用於無陽極電池中,增強其性能。
第一部分透過FTIR與NMR進行氟化聚醯亞胺的結構鑑定,確認合成出具有氟基與羧基的功能型高分子,並使用多種儀器探討不同莫耳數比的氟化聚醯亞胺性質。
第二部分透過旋塗技術與靜電紡絲技術進行銅箔的改質,使用旋塗技術在表面上塗佈上氟化聚醯亞胺的薄膜,藉此改善無陽極電池的性能,透過氟化聚醯亞胺的塗層修飾,可成功的抑制鋰枝晶的生長,並促使鋰離子沉積時生長的較為平坦且均勻,進而提高無陽極電池的循環壽命與庫倫效率,平均庫倫效率從原先的83.99 % 提升至90.66 % ,而電容量保持率則由4.21 % 增加至19.78 % 。另外,使用靜電紡絲技術進行銅箔的改質,相比於旋塗技術改質的銅箔,其表面具有纖維狀的結構,表面與內部具有許多大尺寸孔洞的結構,使得纖維薄膜之中具有可以互相連結的通道,可提高潤濕性與離子導電度。平均庫倫效率從原先的83.99 % 提升至89.27 % ,而電容量保持率則由4.21 % 增加至12.24 % 。
第三部分為進行隔離膜的改質,透過靜電紡絲塗層後的隔離膜具有堅固的氟化聚醯亞胺纖維膜,與商用隔離膜相比,具有較好的熱尺寸安定性,並且藉由靜電紡絲薄膜的多孔特性增強對電解液的潤濕性,也因其具有相當大的機械強度,可以有效地防止鋰枝晶的生長,最後透過氟化聚醯亞胺結構中多氟元素的幫助,能夠使固態電解質界面(SEI)產生較多的富LiF結構,進而使無陽極電池提升較好的庫倫效率以及電容保持率,平均庫倫效率從原先的83.99 % 提升至90.42 % ,而電容量保持率則由4.21 % 增加至16.25 % 。
本研究中,成功合成出功能型的氟化聚醯亞胺,並透過氟基與羧基的協同作用改質銅箔與隔離膜,使兩者在性能上有大幅的優化,促使無陽極電池有更好的庫倫效率與電容保持率。


In this research, synthetic fluorinated polyimide is used in the anode-free battery, and fluorinated polyimide with different functional group ratios is designed to modify the copper foil and separator. The work is envisaged to solve the anode-free battery problems through high mechanical strength, high thermal stability, and high wettability polymer coating.
This research consists of three parts. The first one is to study the self-synthesized fluorinated polyimide, analyze its structure, mechanical strength, viscosity, and thermal stability. The second part is to improve the anode substrate through the fluorinated polyimide coating made by spin coating and electrospinning. The third part is to modify the commercial separator by fluorinated polyimide and evaluate its performance in an anode-free battery.
The first part is to identify fluorinated polyimide structure, confirming the synthesis of functional polymers with fluorine and carboxyl groups by FTIR and NMR. Properties of fluorinated polyimide in different molar ratios have been characterized by various instruments.
The second part is to modify the copper foil through spin coating and electrospinning. Using spin coating to coat fluorinated polyimide film on the surface can improve the performance of the anode-free battery. The fluorinated polyimide coating can successfully inhibit the growth of lithium dendrites and promote the flat and uniform growth of lithium deposition, thereby enhancing the cycle life and coulomb efficiency of the anode-free battery. The average coulombic efficiency has been increased from the original 83.99 % to 90.66 %, and the capacity retention has been increased from 4.21 % to 19.78 % . In addition, the electrospinning is also employed to modify the copper foil. Compared with the copper foil modified by spin coating, its electrospun surface has a fibrous structure, and the surface and interior have numerous large-sized holes. These holes form interconnected channels. Therefore, the wettability and ion conductivity are improved. The average coulombic efficiency has been increased from the original 83.99 % to 89.27 %, and the retention capacity has been increased from 4.21 % to 12.24 % .
The last part is the modification of the separator. The separator with the electrospinning coating is a strong fluorinated polyimide fiber membrane. Compared with the commercial separator, it has better thermal stability. Attributed to the following merits, the anode-less battery has higher coulombic efficiency and capacity retention. The porous electrospinning film enhances the electrolyte's wettability. The polymer coating with great mechanical strength effectively prevents the growth of lithium dendrites. The polyfluoride in the fluorinated polyimide helps to produce more LiF-rich structures at the solid electrolyte interface (SEI). The average coulombic efficiency has been increased from the original 83.99 % to 90.42 %, and the retention capacity has been increased from 4.21 % to 16.25 % .
In this research, a functional fluorinated polyimide has been successfully synthesized. The synergistic effects of fluorine and carboxyl groups greatly optimize the performance of the copper foil and commercial separator and promote anode-free battery with improved coulomb efficiency and retention capacity.

摘要 i ABSTRACT iii 致謝 vi 目錄 viii 圖目錄 xi 表目錄 xviii 第 1 章 緒論 1 1.1 前言 1 1.2 鋰離子電池的發展 2 1.3 鋰離子電池的組成與反應機制 4 1.3.1 鋰電池組成 4 1.3.2 鋰電池反應原理 7 1.4 無陽極鋰離子電池的組成及反應機制 9 1.4.1 無陽極鋰離子電池 ( Anode‐Free rechargeable Lithium metal Battery,AFLB ) 9 1.4.2 無陽極鋰離子電池的反應機制 10 1.4.3 無陽極鋰離子電池面臨的挑戰 11 第 2 章 文獻回顧 13 2.1 改善無陽極電池及優化其性能 13 2.1.1 電解質改性與添加劑 13 2.1.2 電流收集器的設計與優化 23 2.2 人造SEI層 26 2.3 隔離膜的改質 42 2.4 聚醯亞胺 53 2.5 研究動機與目的 56 第 3 章 實驗方法及實驗儀器 58 3.1 實驗儀器設備 58 3.2 實驗藥品 59 3.3 實驗步驟 60 3.3.1 FPI (FPI 5:3.5:1.5) 之合成 60 3.3.2 FPI (FPI 5:4:1) 之合成 61 3.3.3 FPI (FPI 5:4.5:0.5) 之合成 62 3.3.4 旋轉塗佈技術 63 3.3.5 靜電紡織技術 64 3.4 儀器原理與分析 64 3.4.1 場發射掃描式電子顯微鏡 (FE-SEM) 64 3.4.2 能量散射能譜儀 (EDS) 65 3.4.3 傅里葉轉換紅外光譜 (FTIR) 65 3.4.4 拉力試驗機 (Tensile testing) 65 3.4.5 場發射雙束型聚焦離子束顯微鏡 (FIB) 66 3.4.6 掃描探針顯微鏡 (SPM) 66 3.4.7 黏度計(Viscosity) 66 3.4.8 液態超導核磁共振儀 (NMR) 67 3.4.9 X射線光電子能譜儀 (XPS) 67 3.4.10 熱重分析儀 (TGA) 67 3.4.11 高效能高分子核心系統 (APC) 68 3.4.12 表面張力儀 68 3.5 電池材料電化學特性測試 68 第 4 章 結果與討論---人造SEI (Artificial SEI) 71 4.1.1 氟化聚醯亞胺結構鑑定 73 4.1.2 氟化聚醯亞胺分子量與聚合度分析 77 4.1.3 氟化聚醯亞胺黏度分析 80 4.1.4 氟化聚醯亞胺熱性質分析 81 4.2 人造SEI塗層材料結構鑑定 83 4.2.1 機械強度分析 83 4.2.2 附著力分析 85 4.3 高分子材料塗層型態分析 87 4.3.1 人造SEI塗層-旋轉塗佈製程材料型態分析 87 4.3.2 人造SEI塗層-旋轉塗佈製程循環後之SEM型態分析 91 4.4 人造SEI塗層-旋轉塗佈製程電化學分析 96 4.4.1 充放電電化學性能分析 96 4.5 人造SEI塗層-靜電紡絲製程 103 4.5.1 人造SEI塗層-靜電紡絲製程4小時材料型態分析 103 4.5.2 人造SEI塗層-靜電紡絲製程4小時電化學分析 104 4.5.3 人造SEI塗層-靜電紡絲製程8小時材料型態分析 107 4.5.4 人造SEI塗層-靜電紡絲製程8小時電化學分析 108 第 5 章 結果與討論---隔離膜改質 111 5.1 靜電紡絲纖形貌分析 111 5.2 靜電紡絲纖維膜機械拉伸性質 114 5.3 靜電紡絲纖維膜熱穩定性質 115 5.4 靜電紡絲纖維膜潤濕性與孔隙率 117 5.5 電池效能分析 121 5.5.1 充放電電化學性能分析 121 5.5.2 循環後SEM型態分析 123 5.5.3 循環後XPS表面鑑定分析 125 第 6 章 結論 129 第 7 章 未來展望 133 第 8 章 參考文獻 135

[1] N. Nitta, F. Wu, J. T. Lee and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015.
[2] S. Pacala and R. Socolow, "Stabilization wedges: solving the climate problem for the next 50 years with current technologies," Science, vol. 305, no. 5686, pp. 968-972, 2004.
[3] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, pp. 171-179, 2011.
[4] M. Armand and J. M. Tarascon, "Building better batteries," Nature, vol. 451, no. 7179, pp. 652-657, 2008.
[5] A. Manthiram, "An outlook on lithium ion battery technology," ACS Central Science, vol. 3, no. 10, pp. 1063-1069, 2017.
[6] A. Manthiram, "A reflection on lithium-ion battery cathode chemistry," Nature Communications, vol. 11, no. 1, pp. 1-9, 2020.
[7] W. Van Schalkwijk and B. Scrosati, "Advances in lithium ion batteries introduction," Advances In Lithium-Ion Batteries, pp. 1-5, 2002.
[8] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, "LixCoO2 (0< x<-1): a new cathode material for batteries of high energy density," Materials Research Bulletin, vol. 15, no.6, pp. 783-789, 1980.
[9] Y. L. Ding, J. Xie, G. S. Cao, T. J. Zhu, H. M. Yu and X. B. Zhao, "Single‐crystalline LiMn2O4 nanotubes synthesized via template‐engaged reaction as cathodes for high‐power lithium ion batteries," Advanced Functional Materials, vol. 21, no. 2, pp. 348-355, 2011.
[10] T. Ohzuku, A. Ueda and M. Nagayama, "Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells," Journal Of The Electrochemical Society, vol. 140, no. 7, pp. 1862, 1993.
[11] J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, S. Nowak, I. C. Laskovic and M. Winter, "Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions," Journal Of Power Sources, vol. 359, pp. 458-467, 2017.
[12] D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins and Y. Cui, "Spinel LiMn2O4 nanorods as lithium ion battery cathodes," Nano Letters, vol. 8, no. 11, pp. 3948-3952, 2008.
[13] M. M. Thackeray, "Manganese oxides for lithium batteries," Progress In Solid State Chemistry, vol. 25, no. 1-2, pp. 1-71, 1997.
[14] D. Purwaningsih, H. Sutrisno and D. Y. Lestari, "Effects of calcination temperatures on synthesis of LiMn2O4 by polymer matrix-based alkaline deposition method," 2014.
[15] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, "Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries," Journal Of The Electrochemical Society, vol. 144, no. 4, pp. 1188, 1997.
[16] H. S. Kim, B. W. Cho and W. I. Cho, "Cycling performance of LiFePO4 cathode material for lithium secondary batteries," Journal Of Power Sources, vol. 132, no. 1-2, pp. 235-239, 2004.
[17] K. Zaghib, X. Song, A. Guerfi, R. Rioux and K. Kinoshita, "Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal," Journal Of Power Sources, vol. 119, pp. 8-15, 2003.
[18] M. Endo, C. Kim, K. Nishimura, T. Fujino and K. Miyashita, "Recent development of carbon materials for Li ion batteries," Carbon, vol. 38, no. 2, pp. 183-197, 2000.
[19] M. V. Reddy, G. V. Subba Rao and B. V. R. Chowdari, "Metal oxides and oxysalts as anode materials for Li ion batteries," Chemical Reviews, vol. 113, no. 7, pp. 5364-5457, 2013.
[20] Z. Zhang, Y. Huang, J. Yan, C. Li, X. Chen and Y. Zhu, "A facile synthesis of 3D flower-like NiCo2O4@ MnO2 composites as an anode material for Li-ion batteries," Applied Surface Science, vol. 473, pp. 266-274, 2019.
[21] C. X. Guo, M. Wang, T. Chen, X. W. Lou and C. M. Li, "A hierarchically nanostructured composite of MnO2/conjugated polymer/graphene for high‐performance lithium ion batteries," Advanced Energy Materials, vol. 1, no. 5, pp. 736-741, 2011.
[22] J. Yang, H. Tian, J. Tang, T. Bai, L. Xi, S. Chen and X. Zhou, "Self-assembled NiCo2O4-anchored reduced graphene oxide nanoplates as high performance anode materials for lithium ion batteries," Applied Surface Science, vol. 426, pp. 1055-1062, 2017.
[23] L. Shi, H. Li, Z. Wang, X. Huang and L. Chen, "Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries," Journal Of Materials Chemistry, vol. 11, no. 5, pp. 1502-1505, 2001.
[24] D. P. Abraham, M. M. Furczon, S. H. Kang, D. W. Dees and A. N. Jansen, "Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells," Journal Of Power Sources, vol. 180, no. 1, pp. 612-620, 2008.
[25] R. Weber, M. Genovese, A. J. Louli, S. Hames, C. Martin, I. G. Hill and J. R. Dahn, "Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte," Nature Energy, vol. 4, no. 8, pp. 683-689, 2019.
[26] F. Zheng, M. Kotobuki, S. Song, M. O. Lai and L. Lu, "Review on solid electrolytes for all-solid-state lithium-ion batteries," Journal Of Power Sources, vol. 389, pp. 198-213, 2018.
[27] J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda and C. D. Evans, "Thin-film lithium and lithium-ion batteries," Solid State Ionics, vol. 135, no. 1-4, pp. 33-45, 2000.
[28] M. V. Reddy, G. V. Subba Rao and B. V. R. Chowdari, "Metal oxides and oxysalts as anode materials for Li ion batteries," Chemical Reviews, vol. 113, no. 7, pp. 5364-5457, 2013.
[29] J. G. Zhang, "Anode-less," Nature Energy, vol. 4, no. 8, pp. 637-638, 2019.
[30] T. T. Beyene, H. K. Bezabh, M. A. Weret, T. M. Hagos, C. J. Huang, C. H. Wang, W. N. Su, H. Dai and B. J. Hwang, "Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries," Journal Of The Electrochemical Society, vol. 166, no. 8, pp. A1501, 2019.
[31] J. Chen, J. Xiang, X. Chen, L. Yuan, Z. Li and Y. Huang, "Li2S-based anode-free full batteries with modified Cu current collector," Energy Storage Materials, 2020.
[32] V. Pande and V. Viswanathan, "Computational screening of current collectors for enabling anode-free lithium metal batteries," ACS Energy Letters, vol. 4, no. 12, pp. 2952-2959, 2019.
[33] S. S. Zhang, X. Fan and C. Wang, "A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery," Electrochimica Acta, vol. 258, pp. 1201-1207, 2017.
[34] G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula, D. Wang, L. Q. Chen and D. Wang, "Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects," Nature Energy, vol. 3, no. 12, pp. 1076-1083, 2018.
[35] S. Tang, Z. Qiu, X. Y. Wang, Y. Gu, X. G. Zhang, W. W. Wang, J. W. Yan, M. S. Zheng, Q. F. Dong and B. W. Mao, "A room-temperature sodium metal anode enabled by a sodiophilic layer," Nano Energy, vol. 48, pp. 101-106, 2018.
[36] Y. An, Y. Tian, H. Wei, B. Xi, S. Xiong, J. Feng and Y. Qian, "Porosity‐and graphitization‐controlled fabrication of nanoporous silicon @ carbon for lithium storage and its conjugation with MXene for lithium‐metal anode," Advanced Functional Materials, vol. 30, no. 9, pp. 1908721, 2020.
[37] X. B. Cheng, R. Zhang, C. Z. Zhao and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: a review," Chemical Reviews, vol. 117, no. 15, pp. 10403-10473, 2017.
[38] B. Lee, E. Paek, D. Mitlin and S. W. Lee, "Sodium metal anodes: emerging solutions to dendrite growth," Chemical Reviews, vol. 119, no. 8, pp. 5416-5460, 2019.
[39] L. Fan, S. Wei, S. Li, Q. Li and Y. Lu, "Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries," Advanced Energy Materials, vol. 8, no. 11, pp. 1702657, 2018.
[40] D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand and G. Wang, "Polymer electrolytes for lithium-based batteries: advances and prospects," Chem, vol. 5, no. 9, pp. 2326-2352, 2019.
[41] S. Kim, C. Jung, H. Kim, K. E. Thomas‐Alyea, G. Yoon, B. Kim, M. E. Badding, Z. Song, J. Chang, J. Kim, D. Im and K. Kang, "The Role of Interlayer chemistry in Li‐metal growth through a garnet‐type solid electrolyte," Advanced Energy Materials, vol. 10, no. 12, pp. 1903993, 2020.
[42] W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram and J. B. Goodenough, "Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte," Journal Of The American Chemical Society, vol. 138, no. 30, pp. 9385-9388, 2016.
[43] A. M. Haregewoin, A. S. Wotango and B. J. Hwang, "Electrolyte additives for lithium ion battery electrodes: progress and perspectives," Energy & Environmental Science, vol. 9, no. 6, pp. 1955-1988, 2016.
[44] N. A. Sahalie, A. A. Assegie, W. N. Su, Z. T. Wondimkun, B. A. Jote, B. Thirumalraj, C. J. Huang, Y. W. Yang and B. J. Hwang, "Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte," Journal Of Power Sources, vol. 437, pp. 226912, 2019.
[45] J. Heine, P. Hilbig, X. Qi, P. Niehoff, M. Winter and P. Bieker, "Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries," Journal Of The Electrochemical Society, vol. 162, no. 6, pp. A1094, 2015.
[46] J. Alvarado, M. A. Schroeder, T. P. Pollard, X. Wang, J. Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y. S. Meng and K. Xu, "Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes," Energy & Environmental Science, vol. 12, no. 2, pp. 780-794, 2019.
[47] K. S. Exner, "Recent advancements towards closing the gap between electrocatalysis and battery science communities: the computational lithium electrode and activity–stability volcano plots," ChemSusChem, vol. 12, no. 11, pp. 2330-2344, 2019.
[48] Y. Zhu, V. Pande, L. Li, B. Wen, M. S. Pan, D. Wang, Z. F. Ma, V. Viswanathan and Y. M. Chiang, "Design principles for self-forming interfaces enabling stable lithium-metal anodes," Proceedings Of The National Academy Of Sciences, vol. 117, no. 44, pp. 27195-27203, 2020.
[49] H. N. Umh, J. Park, J. Yeo, S. Jung, I. Nam and J. Yi, "Lithium metal anode on a copper dendritic superstructure," Electrochemistry Communications, vol. 99, pp. 27-31, 2019.
[50] D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai and Y. Chen, "Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage," Nature Nanotechnology, vol. 9, no. 7, pp. 555-562, 2014.
[51] S. Zhao, D. W. Wang, R. Amal and L. Dai, "Carbon‐based metal‐free catalysts for key reactions involved in energy conversion and storage," Advanced Materials, vol. 31, no. 9, pp. 1801526, 2019.
[52] R. Zhang, X. R. Chen, X. Chen, X. B. Cheng, X. Q. Zhang, C. Yan and Q. Zhang, "Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite‐free lithium metal anodes," Angewandte Chemie, vol. 129, no. 27, pp. 7872-7876, 2017.
[53] S. Liu, A. Wang, Q. Li, J. Wu, K. Chiou, J. Huang and J. Luo, "Crumpled graphene balls stabilized dendrite-free lithium metal anodes," Joule, vol. 2, no. 1, pp. 184-193, 2018.
[54] H. Wang, Y. Li, Y. Li, Y. Liu, D. Lin, C. Zhu, G. Chen, A. Yang, K. Yan, H. Chen, Y. Zhu, J. Li, J. Xie, J. Xu, Z. Zhang, R. Vila, A. Pei, K. Wang and Y. Cui, "Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy," Nano Letters, vol. 19, no. 2, pp. 1326-1335, 2019.
[55] Z. T. Wondimkun, T. T. Beyene, M. A. Weret, N. A. Sahalie, C. J. Huang, B. Thirumalraj, B. A. Jote, D. Wang, W. N. Su, C. H. Wang, G. Brunklaus, M. Winter and B. J. Hwang, "Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries," Journal Of Power Sources, vol. 450, pp. 227589, 2020.
[56] A. A. Assegie, C. C. Chung, M. C. Tsai, W. N. Su, C. W. Chen and B. J. Hwang, "Multilayer-graphene-stabilized lithium deposition for anode-free lithium-metal batteries," Nanoscale, vol. 11, no. 6, pp. 2710-2720, 2019.
[57] L. H. Abrha, T. A. Zegeye, T. T. Hagos, H. Sutiono, T. M. Hagos, G. B. Berhe, C. J. Huang, S. K. Jiang, W. N. Su, Y. W. Yang and B. J. Hwang, "Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery," Electrochimica Acta, vol. 325, pp. 134825, 2019.
[58] X. Kong, P. E. Rudnicki, S. Choudhury, Z. Bao and J. Qin, "Dendrite suppression by a polymer coating: a coarse‐grained molecular study," Advanced Functional Materials, vol. 30, no. 15, pp. 1910138, 2020.
[59] A. A. Assegie, J. H. Cheng, L. M. Kuo, W. N. Su and B. J. Hwang, "Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery," Nanoscale, vol. 10, no. 13, pp. 6125-6138, 2018.
[60] Q. Zhang, J. Pan, P. Lu, Z. Liu, M. W. Verbrugge, B. W. Sheldon, Y. T. Cheng, Y. Qi and X. Xiao, "Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries," Nano Letters, vol. 16, no. 3, pp. 2011-2016, 2016.
[61] K. Leung, "Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries," The Journal Of Physical Chemistry C, vol. 117, no. 4, pp. 1539-1547, 2013.
[62] L. Chen, K. S. Chen, X. Chen, G. Ramirez, Z. Huang, N. R. Geise, H. G. Steinruck, B. L. Fisher, R. S. Yassar, M. F. Toney, M. C. Hersam and J. W. Elam, "Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes," ACS Applied Materials & Interfaces, vol. 10, no. 32, pp. 26972-26981, 2018.
[63] J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao and Y. Cui, "Surface fluorination of reactive battery anode materials for enhanced stability," Journal Of The American Chemical Society, vol. 139, no. 33, pp. 11550-11558, 2017.
[64] C. M. Costa, M. M. Silva and S. Lanceros-Mendez, "Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications," Rsc Advances, vol. 3, no. 29, pp. 11404-11417, 2013.
[65] H. Teng, "Overview of the development of the fluoropolymer industry," Applied Sciences, vol. 2, no. 2, pp. 496-512, 2012.
[66] J. Luo, C. C. Fang and N. L. Wu, "High polarity poly (vinylidene difluoride) thin coating for dendrite‐free and high‐performance lithium metal anodes," Advanced Energy Materials, vol. 8, no. 2, pp. 1701482, 2018.
[67] Z. Hao, C. Wu, Q. Zhang, J. Liu and H. Wang, "A sandwich‐structured separator based on in situ coated polyaniline on polypropylene membrane for improving the electrolyte wettability in lithium‐ion batteries," International Journal Of Energy Research, vol. 43, no. 14, pp. 8049-8056, 2019.
[68] V. Deimede and C. Elmasides, "Separators for lithium‐ion batteries: a review on the production processes and recent developments," Energy Technology, vol. 3, no. 5, pp. 453-468, 2015.
[69] Y. He, Y. Qiao, Z. Chang and H. Zhou, "The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries," Energy & Environmental Science, vol. 12, no. 8, pp. 2327-2344, 2019.
[70] J. Luo, Y. Li, H. Zhang, A. Wang, W. S. Lo, Q. Dong, N. Wong, C. Povinelli, Y. Shao, S. Chereddy, S. Wunder, U. Mohanty, C. K. Tsung and D. Wang, "A metal–organic framework thin film for selective Mg2+ transport," Angewandte Chemie International Edition, vol. 58, no. 43, pp. 15313-15317, 2019.
[71] L. Shen, H. B. Wu, F. Liu, C. Zhang, S. Ma, Z. Le and Y. Lu, "Anchoring anions with metal–organic framework-functionalized separators for advanced lithium batteries," Nanoscale Horizons, vol. 4, no. 3, pp. 705-711, 2019.
[72] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu and X. Zhang, "A review of recent developments in membrane separators for rechargeable lithium-ion batteries," Energy & Environmental Science, vol. 7, no. 12, pp. 3857-3886, 2014.
[73] T. Zhang, J. Yang, Z. Xu, H. Li, Y. Guo, C. Liang and J. Wang, "Suppressing dendrite growth of a lithium metal anode by modifying conventional polypropylene separators with a composite layer," ACS Applied Energy Materials, vol. 3, no. 1, pp. 506-513, 2019.
[74] J. Zhao, D. Chen, B. Boateng, G. Zeng, Y. Han, C. Zhen, J. B. Goodenough and W. He, "Atomic interlamellar ion path in polymeric separator enables long-life and dendrite-free anode in lithium ion batteries," Journal Of Power Sources, vol. 451, pp. 227773, 2020.
[75] Z. Rao, Z. Yang, W. Gong, S. Su, Q. Fu and Y. Huang, "Simultaneously suppressing lithium dendrite growth and Mn dissolution by integration of a safe inorganic separator in a LiMn2O4/Li battery," Journal Of Materials Chemistry A, vol. 8, no. 7, pp. 3859-3864, 2020.
[76] J. Liang, Q. Chen, X. Liao, P. Yao, B. Zhu, G. Lv, X. Wang, X. Chen and J. Zhu, "A nano‐shield design for separators to resist dendrite formation in lithium‐metal batteries," Angewandte Chemie International Edition, vol. 59, no. 16, pp. 6561-6566, 2020.
[77] K. Liu, P. Bai, M. Z. Bazant, C. A. Wang and J. Li, "A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm−2 observed in situ in a capillary cell," Journal Of Materials Chemistry A, vol. 5, no. 9, pp. 4300-4307, 2017.
[78] X. Hao, J. Zhu, X. Jiang, H. Wu, J. Qiao, W. Sun, Z. Wang and K. Sun, "Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators," Nano Letters, vol. 16, no. 5, pp. 2981-2987, 2016.
[79] X. M. Wang, Z. Y. Guo, Y. Zhang, M. L. Chen and J. H. Wang, "ZrO2 doped magnetic mesoporous polyimide for the efficient enrichment of phosphopeptides," Talanta, vol. 188, pp. 385-392, 2018.
[80] B. Baumgartner, M. J. Bojdys, P. Skrinjar and M. M. Unterlass, "Design strategies in hydrothermal polymerization of polyimides," Macromolecular Chemistry And Physics, vol. 217, no. 3, pp. 485-500, 2016.
[81] P. M. Hergenrother, "The use, design, synthesis, and properties of high performance/high temperature polymers: an overview," High Performance Polymers, vol. 15, no. 1, pp. 3-45, 2003.
[82] J. J. Licari, Coating materials for electronic applications: polymers, processing, reliability, testing. William Andrew, 2003.
[83] J. A. Kreuz, A. L. Endrey, F. P. Gay and C. E. Sroog, "Studies of thermal cyclizations of polyamic acids andtertiary amine salts," Journal Of Polymer Science Part A‐1: Polymer Chemistry, vol. 4, no. 10, pp. 2607-2616, 1966.
[84] V. M. Svetlichnyi, K. K. Kalnin’sh, V. V. Kudryavtsev and M. M. Koton, Dokl. Akad. Nauk SSSR (Engl. Transi.), vol. 237, no. 3, pp. 693, 1977.
[85] C. P. Yang, S. H. Hsiao and K. L. Wu, "Organosoluble and light-colored fluorinated polyimides derived from 2, 3-bis (4-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides," Polymer, vol. 44, no. 23, pp. 7067-7078, 2003.
[86] C. E. Sroog, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards and K. L. Olivier, "Aromatic polypyromellitimides from aromatic polyamic acids," Journal Of Polymer Science Part A: General Papers, vol. 3, no. 4, pp. 1373-1390, 1965.
[87] H. D. Stenzenberger and P. M. Hergenrother, Polyimides. D. Wilson (Ed.). New York: Blackie, pp. 34, 1990.
[88] T. Seckin, S. Koytepe, I. Ozdemir and B. Çetinkaya, "Syntheses and properties of metal containing polyimides based on the gold carbene complex," Journal Of Inorganic And Organometallic Polymers, vol. 13, no. 1, pp. 9-20, 2003.
[89] H. B. Zheng and Z. Y. Wang, "Polyimides derived from novel unsymmetric dianhydride," Macromolecules, vol. 33, no. 12, pp. 4310-4312, 2000.
[90] N. Leblanc, D. Le Cerf, C. Chappey, D. Langevin, M. Métayer and G. Muller, "Polyimide asymmetric membranes: elaboration, morphology, and gas permeation performance," Journal Of Applied Polymer Science, vol. 89, no. 7, pp. 1838-1848, 2003.
[91] C. P. Yang and Y. Y. Su, "Properties of organosoluble aromatic polyimides from 3′-trifluoromethyl-3, 4′-oxydianiline," Polymer, vol. 44, no. 20, pp. 6311-6322, 2003.
[92] T. Matsuura, Y. Hasuda, S. Nishi and N. Yamada, "Polyimide derived from 2, 2'-bis (trifluoromethyl)-4, 4'-diaminobiphenyl. 1. Synthesis and characterization of polyimides prepared with 2, 2'-bis (3, 4-dicarboxyphenyl) hexafluoropropane dianhydride or pyromellitic dianhydride," Macromolecules, vol. 24, no. 18, pp. 5001-5005, 1991.
[93] A. E. Feiring, B. C. Auman and E. R. Wonchoba, "Synthesis and properties of fluorinated polyimides from novel 2, 2'-bis (fluoroalkoxy) benzidines," Macromolecules, vol. 26, no. 11, pp. 2779-2784, 1993.
[94] G. Hougham, G. Tesoro and J. Shaw, "Synthesis and properties of highly fluorinated polyimides," Macromolecules, vol. 27, no. 13, pp. 3642-3649, 1994.
[95] M. H. Brink, D. K. Brandom, G. L. Wilkes and J. E. McGrath, "Synthesis and characterization of a novel ‘3F’-based fluorinated monomer for fluorine-containing polyimides," Polymer, vol. 35, no. 23, pp. 5018-5023, 1994.
[96] B. C. Auman, D. P. Higley, K. V. Scherer Jr, E. F. McCord and W. H. Shaw Jr, "Synthesis of a new fluoroalkylated diamine, 5-[1H, 1 H-2-bis (trifluoromethyl)-heptafluoropentyl]-1, 3-phenylenediamine, and polyimides prepared therefrom," Polymer, vol. 36, no. 3, pp. 651-656, 1995.
[97] S. Y. Koo, D. H. Lee, H. J. Choi and K. Y. Choi, "Preparation and properties of novel soluble aromatic polyetherimides from 1, 1′‐bis [4‐(3, 4‐dicarboxyphenoxy) phenyl]‐1‐phenyl‐2, 2, 2‐trifluoroethane dianhydride and aromatic diamines," Journal Of Applied Polymer Science, vol. 61, no. 7, pp. 1197-1204, 1996.
[98] S. H. Lin, F. Li, S. Z. Cheng and F. W. Harris, "Organo-soluble polyimides: synthesis and polymerization of 2, 2 ‘-bis (trifluoromethyl)-4, 4 ‘, 5, 5 ‘-biphenyltetracarboxylic dianhydride," Macromolecules, vol. 31, no. 7, pp. 2080-2086, 1998.
[99] D. H. Lee, S. Y. Koo, D. Y. Kim and H. J. Choi, "Preparation and properties of soluble aromatic polyetherimides based on 2, 2‐bis [4‐(3, 4‐dicarboxyphenoxy) phenyl] hexafluoropropane dianhydride," Journal Of Applied Polymer Science, vol. 76, no. 2, pp. 249-257, 2000.
[100] C. P. Yang, S. H. Hsiao and K. H. Chen, "Organosoluble and optically transparent fluorine-containing polyimides based on 4, 4′-bis (4-amino-2-trifluoromethylphenoxy)-3, 3′, 5, 5′-tetramethylbiphenyl," Polymer, vol. 43, no. 19, pp. 5095-5104, 2002.
[101] K. Xie, J. G. Liu, H. W. Zhou, S. Y. Zhang, M. H. He and S. Y. Yang, "Soluble fluoro-polyimides derived from 1, 3-bis (4-amino-2-trifluoromethyl-phenoxy) benzene and dianhydrides," Polymer, vol. 42, no. 17, pp. 7267-7274, 2001.
[102] K. Xie, S. Y. Zhang, J. G. Liu, M. H. He and S. Y. Yang, "Synthesis and characterization of soluble fluorine‐containing polyimides based on 1, 4‐bis (4‐amino‐2‐trifluoromethylphenoxy) benzene," Journal Of Polymer Science Part A: Polymer Chemistry, vol. 39, no. 15, pp. 2581-2590, 2001.
[103] S. Banerjee, M. K. Madhra, A. K. Salunke and D. K. Jaiswal, "Synthesis and properties of fluorinated polyimides. 3. Derived from novel 1, 3-bis [3′-trifluoromethyl-4′(4 ″-amino benzoxy) benzyl] benzene and 4, 4-bis [3′-trifluoromethyl-4′(4-amino benzoxy) benzyl] biphenyl," Polymer, vol. 44, no. 3, pp. 613-622, 2003.
[104] G. Hougham, G. Tesoro and A. Viehbeck, "Influence of free volume change on the relative permittivity and refractive index in fluoropolyimides," Macromolecules, vol. 29, no. 10, pp. 3453-3456, 1996.
[105] H. Q. Pham, G. Kim, H. M. Jung and S. W. Song, "Fluorinated polyimide as a novel high‐voltage binder for high‐capacity cathode of lithium‐ion batteries," Advanced Functional Materials, vol. 28, no. 2, pp. 1704690, 2018.
[106] L. Kong, Y. Yan, Z. Qiu, Z. Zhou and J. Hu, "Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries," Journal Of Membrane Science, vol. 549, pp. 321-331, 2018.
[107] W. Volksen, "Condensation polyimides: synthesis, solution behavior, and imidization characteristics," High Performance Polymers, Springer, Berlin, Heidelberg, pp. 111-164, 1994.
[108] C. S. Brazel and S. L. Rosen, Fundamental principles of polymeric materials. John Wiley & Sons, 2012.
[109] International, ASTM, ASTM D3359, Standard test methods for measuring adhesion by tape test, West Conshohocken, 2009
[110] J. G. Bonner and P. S. Hope, Polymer blends and alloys. Glasgow, MJ Folkes and Blackie Acad. & Prof, pp. 46-74, 1993.
[111] G. Zhang, Q. Fu, K. Shen, L. Jian and Y. Wang, "Studies on blends of high‐density polyethylene and polypropylene produced by oscillating shear stress field," Journal Of Applied Polymer Science, vol. 86, no. 1, pp. 58-63, 2002.
[112] Y. Kim, W. Y. Lee, K. J. Kim, J. S. Yu and Y. J. Kim, "Shutdown-functionalized nonwoven separator with improved thermal and electrochemical properties for lithium-ion batteries," Journal Of Power Sources, vol. 305, pp. 225-232, 2016.
[113] S. Ali, C. Tan, M. Waqas, W. Lv, Z. Wei, S. Wu, B. Boateng, J. Liu, J. Ahmed, J. Xiong, W. He and J. B. Goodenough, "Highly efficient PVDF‐HFP/colloidal alumina composite separator for high‐temperature lithium‐ion batteries," Advanced Materials Interfaces, vol. 5, no. 5, pp. 1701147, 2018.
[114] W. H. Seol, Y. M. Lee and J. K. Park, "Preparation and characterization of new microporous stretched membrane for lithium rechargeable battery," Journal Of Power Sources, vol. 163, no. 1, pp. 247-251, 2006.
[115] R. B. MacMullin and G. A. Muccini, "Characteristics of porous beds and structures," AIChE Journal, vol. 2, no. 3, pp. 393-403, 1956.
[116] X. B. Cheng, R. Zhang, C. Z. Zhao and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: a review," Chemical Reviews, vol. 117, no. 15, pp. 10403-10473, 2017.
[117] K. Leung, "Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries," The Journal Of Physical Chemistry C, vol. 117, no. 4, pp. 1539-1547, 2013.

無法下載圖示 全文公開日期 2026/01/29 (校內網路)
全文公開日期 2026/01/29 (校外網路)
全文公開日期 2026/01/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE