簡易檢索 / 詳目顯示

研究生: 劉軍希
Chun-Hsi Liu
論文名稱: 基於人因工程之道路智慧照明研究
Research of Intelligent Human Centric Road Lighting Based on Human Factor Engineering
指導教授: 辜志承
Jyh-Cherng Gu
蕭鈞毓
Chun-Yu Hsiao
口試委員: 辜志承
Jyh-Cherng Gu
蕭鈞毓
Chun-Yu Hsiao
黃忠偉
Jong-Woei Whang
陳建宇
Chien-Yu Chen
蕭弘清
Horng-Ching Hsiao
王欽戊
Ching-Wu Wang
胡能忠
Neng-Chung Hu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 209
中文關鍵詞: 人因照明LED智能路燈影像式輝度計瀝青鋪面國際糙度指標鋪面狀況指標
外文關鍵詞: human centric lighting, intelligent LED street lights, imaging luminance meter, asphalt pavement, International Roughness Index, Pavement Condition Index
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研發一種結合人因照明與智慧控制的創新策略,運用可變光型之LED智能路燈設計,搭配影像式輝度計,基於IoT sensor-driven之理念,藉由輝度計偵測路面照明狀態,透過AI影像判斷車輛與輝度條件,可自動調適燈具輸出兩種不同型態的配光曲線,分別是平均照度與照度均勻度優先的照度光學設計,適合於未下雨的乾燥路面之視覺判別;及平均輝度與輝度均勻度優先的輝度光學設計,更適合於濕滑路面之行車狀況,有效提升駕駛人的視覺清晰度,可以解決雨後路面濕滑所造成的駕駛人無法正確辨識路面狀況及反射眩光之危害議題,優化全時段道路安全與用路人視覺清晰度,有助於改善長期以來,夜間下雨溼滑時所造成的交通意外。
    另外透過燈具照射於改質瀝青、再生瀝青等新舊不同材質的瀝青道路鋪面之量測數據,評估路面的照明光學效果,可以估測鋪面輝度反射係數q,並與現場道路鋪面量測的國際糙度指標(International Roughness Index, IRI)、鋪面狀況指標(Pavement Condition Index, PCI)兩項指標值進行比值分析,找出相關聯之曲線配對,可以長期蒐集與建立大數據,探討本系統之運算因子,發展出最佳道路照明建構模式,供道路鋪面材質重置刨舖生命週期之參考。
    研究期間,本論文所研發雙配光曲線設計之LED智慧路燈與控制系統,實際應用於桃園市智慧路燈工程的建設,實測驗證路面乾濕度不同條件下,路燈燈具應有不同的配光特性,才能提升行車安全;並再經由智慧亮度控制,可以兼顧節能與行車安全,對於未來的道路照明工程規劃設計及維護,具有引導性的貢獻。


    This dissertation develops an innovative strategy that combines human-centric lighting and intelligent control that uses an adaptive LED street light design together with an imaging luminance meter. Based on the concept of IoT sensor-driven, the imaging luminance meter is used to detect the lighting condition of roadway, with the AI images identification technique, the control system could automatically adjust the adequate light distribution curve of two different types of roadway lighting output, respectively. One of the optical design aims on achieving average illuminance and illuminance uniformity which is suitable when roads are dry and without rain; while another optical design prioritizes average luminnance and luminnance uniformity which is more suitable when roadway surfaces are wet and slippery. That way it could improve the driver's visual clarity effectively, and resolve the problem of driver's inability to correctly identify the road surface conditions and avoid serious glare caused by the slippery road after rain which optimize road safety and visual clarity of passersby at all times, and will eventually help to minimize traffic incidents in rainy nights.
    In addition, through the lighting measurement data of the different new and old asphalt road paving materials such as modified asphalt and recycled asphalt, the data can be used to evaluate the lighting performance of the roadways and estimate the pavement reflection coefficient q. At the same time, while analyzing the ratio between the International Roughness Index (IRI) and Pavement Condition Index (PCI) with the luminance reflection coefficient to find out the related curve pairings, big data could be built in the long term to explore the calculation factors of the system. Hence, with the above findings, we are able to develop the best roadway lighting model which matches with the life cycle of roadway pavement and the material applied.
    During the research period, the intelligent LED street lighting luminaires and control system with dual light luminous distribution curve design developed in this dissertation was actually applied to the construction of Taoyuan City’s intelligence street lighting project. It was tested and verified that street lightings should have different light luminous distribution characteristics under different conditions of roadway pavement, most likely dry and wet conditions which help improves driving safety. Moreover, through intelligent lighting control, both energy saving and driving safety are attained, which could be considered as a milestone for future roadway lighting planning and design.

    摘要 I Abstract II 誌謝 IV 目錄 V 符號索引 IX 圖目錄 X 表目錄 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究方法 6 1.4 研究貢獻 7 1.5 研究流程與方法 9 1.6 章節概述 10 第二章 智能路燈管理系統建置探討 12 2.1 智能路燈系統建置與案例 13 2.1.1 智能路燈系統建置目的 13 2.1.2 台灣智能路燈案例發展沿革 14 2.2 智能路燈設計理念 18 2.3 道路照明工程設計與規劃 20 2.3.1 道路照明的參照標準與工程規範 21 2.3.2 道路照明配光曲線實務應用 23 2.4 道路照明量測方式定義 25 2.5 人眼生理視覺 27 2.5.1 明暗視覺 27 2.5.2 S/P ratio對於道路照明之重要性 28 2.6 照明模擬軟體DIALux實務應用分析 30 2.7 本章小節 32 第三章 道路鋪面與照明工程品質之 關聯探討 33 3.1 常見道路鋪面工程與功能分析 33 3.1.1 水泥混凝土鋪面 33 3.1.2 瀝青混凝土鋪面 34 3.1.3 碎石鋪面 34 3.1.4 綜合分析 35 3.2 基於鋪面變化之道路照明性能實測 36 3.2.1 LED智能路燈基礎說明 36 3.2.2 實測地點與現況鋪面 37 3.2.3 量測設備應有的功能需求 39 3.2.4 量測數據綜合比較與分析 41 3.2.5 量測輝度與照度數值與鋪面現況的關聯程度探討 43 3.2.6 道路標線回歸反射輝度係數與鋪面現況的關聯程度探討 48 3.3 本章小結 53 第四章 道路鋪面與LED智能路燈調光之 關聯探討 56 4.1 LED智能路燈系統 56 4.1.1 系統架構 57 4.1.2 智能路燈之通訊協定評比 59 4.1.3 應用案例:桃園市智能路燈現況 60 4.2 LED智能路燈調光模式設計 60 4.2.1 調光模型的建立 61 4.2.2 調光成效分析及可行性探討 64 4.3 基於鋪面變化之道路調光照明性能實測 77 4.3.1 實測地點的選定方式與鋪面現況 77 4.3.2 量測數據綜合比較與分析 77 4.3.3 新設道路與舊道路之比較分析 80 4.4 路燈調光與道路鋪面生命週期關聯性探 85 4.5 本章小結 86 第五章 建構人因照明智慧控制策略 87 5.1 人因照明系統組成 87 5.1.1 系統架構設計 87 5.1.2 智慧型LED路燈功能設定及硬體架構設計 89 5.2 道路照明透鏡性能評估 93 5.2.1 均勻照度透鏡性能評估 94 5.2.2 均勻輝度透鏡性能評估 96 5.3 LED人因道路照明成效分析 99 5.3.1實施地點選定及照明成效數據蒐集 99 5.3.2人因道路照明成效分析 101 5.4 本章小結 106 第六章 結論與未來建議 107 6.1 結論 107 6.2 未來研究方向 108 參考文獻 110 附錄A 桃園市桃園區大福路照度及色溫量測結果 119 附錄B 桃園市桃園區大福路輝度量測結果 131 附錄C 桃園市桃園區公園路照度及色溫量測結果 167 附錄D 桃園市桃園區公園路輝度量測結果 185 附錄E 影像式輝度計與藍芽色溫照度計規格 209

    [1] Adrian, W. and Jabanputra, R., “Influence of Pavement Reflectance on Lighting for Parking Lots”, SN2458, Portland Cement Association (2005).
    [2] Nam Tran and Buzz Powell, “Strategies for Design and Construction of High-Reflectance Asphalt Pavements,” National Center for Asphalt Technology Report 09-02, (2014).
    [3] Rice, Jeremy Elliott, “Reflectivity of Light Emitting Diodes (LED) and Incandescent Lights on Concrete and Asphalt Pavements,” Electronic Theses and Dissertations. Paper 2579 (2016).
    [4] Khan, H.K., S.P. Senadheera, D.D. Gransberg, and R. Stemprok, “Influence of Pavement Surface Characteristics on Nighttime Visibility of Objects,” Transportation Research Record Journal of the Transportation Research Board, 1692(1692), 39-48 (1999).
    [5] Eetu Puttonen, Juha Suomalainen, Teemu Hakala and Jouni Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Transactions on Geoscience and Remote Sensing, 47(7):2330-2339, (2009).
    [6] Lin Wang, K.Q., and Yi Luo, “Discontinuous Freeform Lens Design for Prescribed Irradiance”. 2007 Optical Society of America, (2007).
    [7] Yu Guiying, Ding Shushu, Jin Ji, and Guo Tiantai, “A Free-form Total Internal Reflection (TIR) Lens for Illumination,” Seventh International Symposium on Precision Engineering Measurements and Instrumentation, vol. 8321, pp. 832110-1-9, (2011).
    [8] Yi Ding, Xu Liu, Zhen-rong Zheng, and Pei-fu Gu, “Secondary Optical Design for LED Illumination Using Freeform Lens,” Proc. SPIE on Illumination Optics, vol. 7103, pp. 71030k-1-8, (2008).
    [9] D. Vazquez-Molini, M. Gonzalez-Montez, A. Alvarez, and E. Bernabeu, “High-Efficiency Light-Emitting Eiode Collimator,” Opt. Eng. 49, 123001 (2010).
    [10] Jin-Jia Chen, T. – Y. w., Kuang-Lung Huang, Te-Shu Liu, Mig-Da Tasi, and Chin-Tang Lin, “Freeform Lens Design for LED Collimating Illumination,” Optical Express, 10984-10995 (2012).
    [11] Jin-Jia Chen, and Chin-Tang Lin, “Freeform Surface Design for a Light-Emitting Diode–Based Collimating Lens,” Proc. SPIE on Optical Engineering, vol. 49, no. 9, pp. 093001-1-8, (2010).
    [12] Yi Ding, X.L., Zhen-rong Zheng, and Pei-fu Gu, “Freeform LED Lens for Uniform Illumination,” Optics Express, vol. 16, No. 17, 12958-12966 (2008).
    [13] Yi Luo, Z.F., Yangjun Han, and Hongtao Li, “Design of Compact and Smooth Free-Form Optical System with Uniform Illuminance for LED Source,” Optics Express, 9055-9063 (2010).
    [14] Yankun Zhen, Zhenan Jia, and Wenzi Zhang, “The Optimal Design of TIR Lens for Improving LED Illumination Uniformity and Efficiency” Proc. SPIE on Optical Design and Testing III, vol. 6834, pp. 6834k-1-8, (2007).
    [15] S. Kudaev and P. Schreiber, “Optimization of Symmetrical Free-Shape Non-Imaging Concentrators for LED Light Source Applications,” Proc. SPIE 5942, pp.594209-1-10, (2005).
    [16] Run Hu, Xiaobing Luo, Huai Zheng, Zong Qin, Zhiqiang Gan, Bulong Wu, and Sheng Liu, “Design of a Novel Freeform Lens for LED Uniform Illumination and Conformal Phosphor Coating,” Optics Express, vol. 20, no. 13, pp. 13727-13737, (2012).
    [17] Jinbo Jiang, Sandy To, W.B. Lee, and Benny Cheung “Optical Design of a Freeform TIR Lens for LED Streetlight,” OPTIK on Light and Electron Optics, vol. 121, no. 19, pp. 1761-1765, (2010).
    [18] K. Wang, X. Luo, Z. Liu, B. Zhou, Z. Gan, and S. Liu, “Optical Analysis of an 80-W Light-Emitting-Diode Street Lamp,” Optical Engineering, vol. 47, Issue 1, 013002, (2008).
    [19] Mikhail A, Moiseev, L.L.D., and Nikolay L. Kazanskiy, “Design of Hight-Efficient Freeform LED Lens for Illumination of Elongated Rectangular Regions,” 2011 Optical Society of America, (2011).
    [20] 康譽齡,「LED路燈之光學系統設計」,碩士論文,國立台灣大學光電工程學研究所,(2011)。
    [21] Pietro Fiorentin, Alessandro Scroccaro, “The Importance of Testing Road Lighting Plants: A Simple System for Their Assessment,” International Instrumentation and Measurement Technology Conference, (2009).
    [22] Piotr Jaskowski, Piotr Tomczuk, “Analysis of the Measurement Plane Change in Street Illumination Measurements,” IEEE, Fifth Junior Conference on Lighting, (2020).
    [23] Richard Baleja, Karel Sokanský , Tomáš Novák , Tomáš Hanusek , Petr Bos, “Measurement and Evaluation of the Road Lighting in Mesopic and Photopic Vision,” IEEE, Fifth Junior Conference on Lighting, (2016).
    [24] Richard Baleja, Barbara Helštýnová, Karel Sokanský, Tomáš Novák, “Measurement of Luminanc Ratios at Pedestrian Crossings” 2015 IEEE 15th International Conference on Environment and Electrical Engineering, (2015).
    [25] Krzysztof Wandachowicz, Mikolaj Przybyla, “The Measurements of the Parameters of Road Lighting – Theory and Practice,” IEEE, Lighting Conference of the Visegrad Countries, (2018).
    [26] 劉守益、陳世晃、王睿懋、林志棟,「多孔性瀝青混凝土成效之評估」,中華道路,第三十九卷第3期,(2000)。
    [27] 蕭志銘、陳建旭、賴俊仰、黃建中、蔡汶璇,「多孔性瀝青混凝土應用於高速公路的績效評估」,鋪面工程,第八卷第四期,(2010)。
    [28] 夏明勝,「瀝青混凝土鋪面特性與噪音防制」,臺灣公路工程第33卷第11期,(2007)。
    [29] G. J. Kennepohl and J. K. Davidson, “Introduction of Stone Mastic Asphalt in Ontario,” AAPT, pp.512~ 534.1992。
    [30] 林秉祈,「台灣地區推動 SMA 可行性之研究—以竹北市鋪道路為例」,國立中央大學土木工程研究所,碩士論文,(2001)。
    [31] 張廖年禧,「國道高速公路鋪設石膠泥及排水性瀝青混凝土成效之研究」,國立中央大學土木工程研究所,碩士論文,(2003)。
    [32] 詹謦聯,「氧化碴應用於密級配瀝青混凝土實驗室成效分析」,國立中央大學土木工程研究所,碩士論文,(2019)。
    [33] 林志棟、林凱悅、呂柏璋,「氧化碴再利用於瀝青混凝土之探討」,鋪面工程, 9(4),57-64,(2011)。
    [34] 鄭清元,「電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究」,國立中央大學土木工程研究所, 碩士論文,(2000)。
    [35] 廖啟州,黃偉慶,蘇茂豐,「廢鑄砂與電弧爐碴混合料取代瀝青混凝土粒料成效探討」,工業污染防治,103(2007):23-36.
    [36] 交通部高速公路局,「陸、公路照明篇」,《交通工程手冊(號誌、交通安全防護設施及照明)》,(2010)。
    [37] 交通部運輸研究所,「符合節能目標之道路設施安全標準評估與應用」,(2012)。
    [38] 劉元斌,「道路照明優化設計與效益評估之研究」,國立臺灣科技大學電機工程系,碩士論文,(2008)。
    [39] 經濟部標準檢驗局,「CNS 15233發光二極體道路照明燈具」,(2012)。
    [40] 高輝光電科技股份有限公司,https://www.kobrite.com.tw/ (瀏覽日期:110年8月1日)。
    [41] Publikacja, C.I.E., “CIE 140-2000: Road Lighting Calculations”, CIE: Vienna, Austria, (2000).
    [42] 台灣照明公會產業知識學院,LED照明與光模擬設計應用班(4.13版)課程簡報,(2019)。
    [43] Rensselaer Polytechnic Institute, Lighting Reseach Center, “The Long and Lighted Road: Lighting and Driving,” https://www.lrc.rpi.edu/pro
    grams/Futures/LF-auto/roadway.asp (瀏覽日期:110年11月20日)。
    [44] 溫世頌,「心理學導論:第三章感覺與知覺」,三民書局,(2007)。
    [45] 林志棟,「瀝青混凝土配合設計及其原理」,公共工程品質管理系列,台北(1988)。
    [46] 公共工程委員會,「瀝青混凝土之一般要求」,施工綱要規範 02741 章。
    [47] 林志棟、陳順興,「淺談溫拌式瀝青滋凝土應用之探討」,技師月刊,2006(42): p.119-124。
    [48] 侯廷霖,「智能LED路燈建設實務探討-以桃園市為例」,國立中央大學土木工程學系碩士論文,(2020)。
    [49] 佳準科技股份有限公司,Westboro Photonics Smart Series Imaging Photometers (USB3 CMOS) 影像式輝度計型錄,https://www.propii.com.tw/show-389409.html (瀏覽日期:110年11月1日)。
    [50] 新思代科技股份有限公司,LukSeeker低功耗藍芽色溫照度Light/Lite Meter,http://www.lidlight.com/luxseeker?lang=zh (瀏覽日期:110年11月1日)。
    [51] 何旻哲,「國道高速公路鋪面維護管理平台功能精進之研究」,國立中央大學博士論文,(2020)。
    [52] 邱瑞昌、朱建東、何鴻文、黃三哲,「熱處理聚酯標線反光強度之研究」,臺灣公路工程第43卷第12期,(2017)。
    [53] 臺北市交通管制工程處,「標線工程特定規範」,110年5月3日修正。
    [54] Chia-Pei Chou, Kin-Wai Leong, Ai-Chin Chen, Yao-Xuan Lee, “Road Marking Retroreflectivity Study via a Visual Algorithm,” International Journal of Pavement Research and Technology. 13(6):614-620, (2020).
    [55] 經濟部能源局,能源統計資料查詢系統,https://www.esist.org.tw/Database (瀏覽日期:2021年12月)。
    [56] 桃園市政府養護工程處,「桃園市全面換裝節能(智能)路燈暨維護案契約」,(2019)。
    [57] 遠傳電信股份有限公司系統整合分公司,「桃園市全面換裝節能(智能)路燈暨維護案服務建議書」,(2019)。
    [58] The 3rd Generation Partnership Project (3GPP),「3GPP Release 13」,(2016)。
    [59] 內政部營建署,「市區道路及附屬工程設計規範」,2015年7月22日頒布。
    [60] 桃園市政府養護工程處,「桃園市路燈纜線檢測暨路燈普查工作」結案報告,(2019)。
    [61] The Illuminating Engineering Society (IES), “TM-21-11 Projecting Long Term Lumen Maintenance of LED Light Source”, (2011)。
    [62] International Commission on Illumination (CIE), “140-2000 Road Lighting Calculations”, (2000).
    [63] 台灣電力公司,「統計資料」,https://www.taipower.com.tw/
    tc/page.aspx?mid=43&cid=28&cchk=03683b67-924d-4ada-9faf-e712d91c20f92021 (瀏覽日期:110年10月30日)。
    [64] Chowdhury, A. and J.W. Button, “A Review of Warm Mix Asphalt,” Texas A&M University System, (2008).
    [65] Kristjansdottir, O., “Warm Mix Asphalt for Cold Weather Paving,” University of Washington, (2006).
    [66] Prowell, B.D., G.C. Hurley, and B. Frank, “Warm-Mix Asphalt: Best practices,” National Asphal Pavement Association, (2007).
    [67] Zhang, R.H., Y.K. Zou, and Y.M. Yin, “Application of Warm-Mix Modified Asphalt Mixture in Highway Maintenance Project,” International Journal of Pavement Research and Technology, 2(4), (2009)
    [68] Angelo, J., et al., “Warm–Mix Asphalt: European Practice. Federal Highway Administration (FHWA),” Report No. FHWA–PL–08–007, Washington DC, USA, (2008).
    [69] Soenen, H., et al., “Foamed Bitumen in Half-Warm Asphalt: A Laboratory Study,” International Journal of Pavement Research and Technology, 3(4), (2010).
    [70] Mallick, R.B. and G. Hendrix, “Use of Foamed Asphalt in Recycling Incinerator Ash for Construction of Stabilized Base Course,” Resources, conservation and recycling, 42(3): p. 239-248, (2004).
    [71] 林志棟,「溫拌瀝青與泡沫瀝青混凝土應用於亞熱帶地區鋪面工程之可行性研究」,國家科學委員會(2011)。
    [72] 邱垂德、黃明詠,「泡沫瀝青冷拌再生混合料之性質研究」,鋪面工程,1(2): p. 1-17(2002)。
    [73] “Laboratory-scale foamed bitumen plant WLB10S, Wirtgen, Editor: Germany.
    [74] “For Asphalt Concrete and Other Hot-Mix Types”, Asphalt Institute No.2 (MS-2), Sixth, Editor 1997.
    [75] Hurley, G.C. and B.D. Prowell, “Evaluation of Sasobit for Use in Warm Mix Asphalt,” NCAT report, 5(06), (2005).
    [76] 吳武雄、陳裕新,「半固態瀝青膠泥年度試驗特性」,中華技術季刊,財團法人中華顧問工程司(65),(2005).
    [77] 吳超凡,「添加 Sasobit 溫拌瀝青混合料的拌和與壓實溫度確定」, 湖南大學學報: 自然科學版, 37(008): p. 1-5, (2010)。
    [78] 余政儒,「瀝青混凝土添加石灰耐久性之研究」,國立中央大學土木工程學系,碩士論文,(1994)。
    [79] 王睿懋,「亞熱帶地區提昇再生瀝青混凝土耐久性之研究 」,國立中央大學土木工程學系,博士論文,(2009)。
    [80] 侯此威,「溫拌再生瀝青混凝土水份侵害特性之研究」,淡江大學土木工程學系,碩士論文,台北,(2011)。
    [81] Kristjánsdóttir, Ó., et al., “Assessing Potential for Warm-Mix Asphalt Technology Adoption,” Transportation Research Record: Journal of the 110 Transportation Research Board, 2040(1): p. 91-99, (2007).
    [82] Ali, A.W., et al., “Laboratory Evaluation of Foamed Warm Mix Asphalt,” International Journal of Pavement Research and Technology, 5(2), (2012).
    [83] Zhao, S., et al. “Laboratory Performance Evaluation of Warm Mix Asphalt Containing High Percentages of RAP,” (2012).
    [84] Rubio, M.C., et al., “Warm Mix Asphalt: An Overview,” Journal of Cleaner Production, 24: p. 76-84, (2012).
    [85] Button, J.W., et al., “A Synthesis of Warm Mix Asphalt,” Texas Transportation Institute, Texas A&M University System, (2007).
    [86] 葉斯文,「溫拌瀝青混凝土之水份侵害特性研究」,淡江大學土木工程學系,碩士論文,(2008)。
    [87] Hurley, G.C. and B.D. Prowell, “Evaluation of Evotherm for Use in Warm Mix Asphalt,” NCAT report, 6(02), (2006).
    [88] Brian D. Prowell, P.D., P.E., “Warm Mix Asphalt: Best Practices,” Asphalt User/Producer Association, (2008).
    [89] DTU, J.M.J., “Warm Mix Asphalt Investigation,” Riga Technical University, (2010)
    [90] Roberts, F.L., et al., “Hot Mix Asphalt Materials, Mixture Design and Construction,” (1996).
    [91] O’Sullivan, K., 100, “Percent Recycling–Sustainability in Pavement Construction,” IRF News, (2009).
    [92] Pratheepan, K., “Use of reclaimed Asphalt Pavements (RAP) in Airfield HMA Pavements,” University of Nevada, Reno, (2009).
    [93] “Performance Evaluation of High RAP Surface Mixture Containing Sasobit®,” Advanced Asphalt Technologies, (2005).
    [94] 吳國洋,「混凝土製品應用於土木工程之減碳效益評估 -以道路、建築工程為例」,國立中央大學土木工程學系,碩士論文,(2011)。
    [95] 環科工程股份有限公司,「溫室氣體盤查實務」,(2010)。
    [96] Silva, H.M.R.D., et al., “Assessment of the Performance of Warm Mix Asphalts in Road Pavements,” International Journal of Pavement Research and Technology, 3(3), (2010).
    [97] 林志忠,,「公共工程使用再生材料落實節能減碳初步探討」,國立中央大學土木工程學系,碩士論文,(2010)。
    [98] Hammond, G. and C.I. Jones, “Embodied Energy and Carbon in Construction Materials,” Proceedings of the ICE Energy, 161(2): p. 87-98, (2008).
    [99] 黃全成,「都會型道路管理機制躍升之研究-以桃園縣政府為例」,國立中央大學土木工程學系,碩士論文,(2013)。
    [100] 曹榮軒,「建置市區道路鋪面維護管理系統之研究-以桃園縣中壢市為例」,國立中央大學土木工程學系,碩士論文,(2012)。
    [101] 蔡品寬,「建構鋪面維護工程履歷於鋪面管理系統之研究-以桃園縣政府為例」,國立中央大學土木工程學系,博士論文,(2011)。

    無法下載圖示 全文公開日期 2032/01/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE