簡易檢索 / 詳目顯示

研究生: 郭燕靜
Yen-ching Kuo
論文名稱: 沉積矽薄膜於自組裝單分子膜修飾之石英基板
Silicon Thin Films Deposited on Self-Assembled Monolayer Modified Quartz Substrate
指導教授: 戴 龑
Yian Tai
口試委員: 洪儒生
Lu-Sheng Hong
朱瑾
Jinn P. Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 多晶矽自組裝單分子薄膜射頻濺鍍
外文關鍵詞: poly silicon, self-assembled monolayer, RF-sputter
相關次數: 點閱:446下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文藉由物理氣相沉積系統(PVD)沉積矽薄膜於自組裝單分子薄膜(SAM)改質後的石英基板,並利用固相結晶法(SPC)使非晶矽薄膜結晶為多晶矽薄膜,最後使用SEM觀察表面型態;Raman光譜、XRD與TEM分析結晶度。
  首先,我們於未修飾石英基板上沉積矽薄膜,找到最佳沉積參數,再者,我們將沉積於石英基板的非晶矽薄膜,進行退火程序,得到非晶矽薄膜結晶為多晶矽薄膜的邊界溫度。得到沉積參數與退火溫度後,再藉由成長自子裝單分子薄膜進行改質石英基板,使矽薄膜能獲得較良好的結晶度。從矽薄膜的晶相分析中,我們可以發現尾端基為-CH3的單分子自組裝薄膜可以有助於矽薄膜的晶相成長。


This research is focused on the silicon thin film deposited on the self-assembled monolayer (SAM) modified quartz substrate by the physics vapor deposition system. Furthermore, using the solid phase crystallization (SPC) method to make the amorphous silicon film transform into the poly-silicon film. Finally, the properties of silicon films on pristine and SAM-modified substrates such as the degree of crystallization and surface morphology were characterized by scanning electron microscope (SEM), Raman spectroscopy, and X-ray diffraction (XRD).
  First, we deposited the silicon on the non-modified quartz substrate to get the optimization parameter. Afterward, the amorphous silicon film was annealed, the structure of silicon transformed from amorphous phase into poly crystalline, getting the phase transformation temperature. We fabricated the SAMs to modify the quartz substrate to influence the crystalline of the silicon film. From the result, -CH3 SAM could improve the degree of crystallization.

中文摘要..........................................................................................................................I Abstract...........................................................................................................................II 誌謝...............................................................................................................................III 目錄...............................................................................................................................IV 圖目錄...........................................................................................................................VI 表目錄...........................................................................................................................IX 名詞縮寫........................................................................................................................X 第一章、緒論................................................................................................................1 1-1 前言 1 1-2 研究目的 2 1-3 多晶矽薄膜文獻回顧 3 第二章、相關理論.......................................................................................................5 2-1 自組裝單分子層薄膜(Self-assembled monolayer,SAM) 5 2-1.1 自組裝單分子層薄膜簡介 5 2-1.2 有機矽烷類單分子自組裝薄膜(organosilane SAMs) 於SiO2基板成長機制 9 2-2 矽薄膜 11 2-2.1 矽薄膜特性介紹 11 2-2.2 複晶矽技術介紹 14 2-3 物理氣相沉積(PVD) 18 2-3.1 電漿原理 18 2-3.2 濺鍍原理 20 2-3.3 直流濺鍍(DC-sputter) 22 2-3.4 射頻濺鍍(RF-sputter) 23 2-4 薄膜成長機制 24 第三章、實驗裝置與方法.........................................................................................29 3-1實驗裝置 29 3-1.1使用RF-sputtering系統成長矽薄膜 29 3-1.2利用石英高溫爐系統進行固相結晶法形成多晶矽薄膜 32 3-2實驗過程 33 3-2.1實驗流程 33 3-2.2 石英玻璃之清洗 34 3-2.3 成長自主裝單分子薄膜 34 3-2.4 以RF-Sputtering系統成長矽薄膜 36 3-2.5 利用固相結晶法形成多晶矽薄膜 38 3-3 樣品分析量測儀器簡介 39 3-3.1 接觸角測量儀 (Contact angle) 39 3-3.2 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope) 40 3-3.3 小角度X-ray繞射儀(Grazing X-ray Diffraction) 42 3-3.4 X射線光電子能譜化學分析儀(X-ray photoelectron spectrometer) 44 3-3.5 拉曼振動光譜儀 (Raman spectrum) 46 3-3.6 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 47 第四章、結果與討論.................................................................................................49 4-1 在不同條件下於未修飾過的石英基板上沉積Si薄膜 49 4-1.1 室溫下調控不同瓦數及工作壓力於未修飾過的石英基板沉積Si薄膜 49 4-2 利用固相結晶法將沉積於未修飾之石英基板的非晶矽薄膜形成多晶矽薄膜 55 4-2.1調控不同退火溫度使非晶矽薄膜形成多晶矽薄膜 55 4-2.2調控不同退火時間使非晶矽薄膜形成多晶矽薄膜 62 4-3在以自組裝單分子層薄膜修飾後的石英基板上沉積矽薄膜 66 4-3.1室溫下,在修飾過後的石英基板上沉積矽薄膜 66 4-3.1.1不同官能基自組裝單分子層薄膜之分析 66 4-3.1.2 在不同官能基自組裝單分子層薄膜上沉積矽薄膜之分析. 68 4-3.2利用固相結晶法,在修飾過後的石英基板上沉積矽薄膜............ 71 4-3.2.1比較不同退火溫度對於修飾過後基板上的矽薄膜之影響 71 4-3.2.2比較不同退火時間對於修飾過後基板上的矽薄膜之影響 78 4-3.2.3比較不同SAMs修飾的矽薄膜在一階段式退火程序之影響 82 4-3.2.4比較不同SAMs修飾的矽薄膜在兩階段式退火程序之影響 88 4-4摻雜氫氣沉積矽薄膜於未修飾過的石英基板上 98 第五章、結果與未來展望........................................................................................100 參考文獻.....................................................................................................................101

[1] S. D. Brotherton, J. R. Ayres, M. J. Edwards, C. A. Fisher, C. Glaister, J. P. Gowers, D. J. McCulloch, and M. Trainor, Thin Solid Films, 337, 188 (1996)
[2] A. Wohllebe, R. Carius, L. Houben, A. Klatt, P. Hapke, J. Klomfas, H. Wagner, Journal of Non-Crystalline Solids, 227, 925 (1998)
[3] J. Sharma, H. C. Chang, and Y. Tai, Langmuir, 26(11), 8251 (2010)
[4] 張亘鈞,沉積金屬氧化物於自組裝單分子薄膜修飾之玻璃基板,國立台灣科技大學化學工程研究所碩士論文 (2010)
[5] M. L. Yeh, C. C. Lee, G. Y. Tzeng, and Y. F. Luo, Japanese Journal of Applied Physics, 48, 056505 (2006)
[6] S. Jun, P. D. Rack, T. E. Mcknight, A. V. Melechko, and M. L. Simpson, Applied Physics Letters, 89,022104 (2006)
[7] D. Raha, D. Das, Solar Energy Materials & Solar Cells , 95, 3181 (2011)
[8] N. A. Bakra, A. M. Fundea, V. S. Wamana, M. M. Kamblea, R. R. Hawaldar, D. P. Amalnerkar , V. G. Sathec, S. W. Gosavid, S. R. Jadkar, Journal of Physics and Chemistry of Solids, 72, 685 (2011)
[9] Maruf Hossain, Husam H. Abusafe, Hameed Naseem, and William D. Brown, Journal of Electronic Materials, 35, 1 (2006)
[10] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chemical Reviews, 105, 1103 (2005)
[11] A. Ulman, Academic Press, San Diego (1991)
[12] A. Ulman, Chemical Reviews , 96, 1533 (1996)
[13] Saghar Khodabakhsh, Brett M. Sanderson, Jenny Nelson, and Tim S. , Advanced Functional Materials, 16, 95 (2006)
[14] J. S. Kim, J. H. Park, and J. H. Lee, Applied Physics Letters, 91, 112111 (2007)
[15] J. Sagiv, Journal of the American Chemical Society,102, 92 (1980)
[16] L. T. Zhuravlev, Langmuir , 3, 316 (1987)
[17] H. O. Finklea, L. R. Robinson, A. Blackburn, B. Richter, D. Allara,
T. Bright, Langmuir , 2, 239 (1986)
[18] D. L. Angst, G.W. Simmons, Langmuir , 7, 2236 (1991)
[19] C. P. Tripp, M. L. Hair, Langmuir, 8, 1120 (1992)
[20] Y. L. Wang, M. Lieberman, Langmuir, 19, 1159, (2003)
[21] M. E. McGovern, K. M. R. Kallury, M. Thompson, Langmuir,
10, 3607 (1994)
[22] 陳志強,低溫複晶矽顯示器技術,全華科技圖書股份有
限公司
[23] R. B. Bergmann, G. Oswald, M. Albrecht and V. Gross, Solar Energy Materials and Solar Cells, 46, 147 (1997)
[24] T. Massuyama, N. Terada, T. Baba, T. Sswada, S. Tsuge, K. Wakisaka, and S. Tsuda, Jounal of Non-Crystalline Solids, 940, 198 (1996)
[25] R. S. Sposili and J. S. Im, Applied Physics Letters, 69, 1864 (1996)
[26] K. Ishikawa, M. Ozawa, C. Oh and M. Matsumura, Japanese Journal of Applied Physics , 37, 731 (1998)
[27] D. D. Malinovska, O. Angelov, M. S. Vassileva, M. Kamenova and
J. C. Pivin, Thin Solid Films, 303, 451 (2004)
[28] O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R.Wenham, Applied Physics Letters, 73, 3214 (1998)
[29] Akihisa Matsuda, Japanese Journal of Applied Physics, 43, 7909 (2004)
[30] 洪木清,陳智崇,高溫快速退火技術於AM-OLED TFT-Array 之
應用,工業材料雜誌254期。
[31] D. Toet, B. Koopmans, P. V. Santos, R. B. Bergmann, and B. Richards, Applied Physics Letters, 69, 3719 (1996)
[32] 石中達,工業用準分子雷射之發展概況
[33] 高正雄,超LSI時代-電漿化學,富漢出版社 (1990)
[34] Y. C. Lin, W. T. Yen, and L.Q. Wang, J. Phys., 50, 82 (2012).
[35] 李玉華,透明導電玻璃及其應用 (1980)
[36] 周安琪,薄膜材料,徐氏基金會 (1975)
[37] M. Ohring, The Materials Science of Thin Film, Academic Press, London (1992)
[38] 李道惟,以噴霧熱解法成長p-type氧化鋅薄膜之研究,國立台北科技大學光電系所碩士論文 (2006)
[39] J. A. Thornton, Journal of Vacuum Science & Technology., 11, 4666 (1974)
[40] M. Konuma, Alpha Science International Ltd.
[41] J. A. Thornton, Journal of Vacuum Science & Technology, 11, 666 (1974)
[42] John. Moulder, William. Stickle, Peter. Sobpl, Kenneth. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics (1995).
[43] B.D. Cullity and S.R. Stock, Elements of X-ray diffraction, 3rd, Prentice Hall, New Jersey (2001)
[44] J. Park, H. Lee, Materials Science and Engineer C, 24, 311 (2004)
[45] H.Y. Kim, K.Y. Lee, J.Y. Lee, Thin Solid Films, 302,17 (1997)
[46] R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, Applied Physics Letters, 40, 534 (1982)
[47] Z.C. Liu, Q.G. He, P.F. Xiao, B. Liang, J.X. Tan, N.Y. He, Z.H. Lu, Material Chemistry and Physics, 82, 301 (2003)
[48] C. Perruchot, M. M. Chehimi, M. Delamar, E. Cabet-Deliry, B. Miksa﹐S. Slomkowski, M. A. Khan, and S. P. Armes, Colloid and Polymer Science, 278, 1139 (2000)
[49] J. Zuo, P. Keil, M. Valtiner, P. Thissen, and G. Grundmeier, Surface Science, 602, 3750 (2008)
[50] W. A. M. Aarnink, A. Weishaupt, and A. van Silfhout, Applied Surface Science, 45, 37 (1990)
[51] B. Lesiak, J. Zemek, Adam Jozwik , Applied Surface Science, 135 ,318, (1998)
[52] J. L. Lenhart, and Wen-li Wu, Langmuir, 19, 4863 (2003)
[53] Simon Flink, Frank C. J. M. van Veggel, and David N. Reinhoudt, Journal of Physical Organic Cheistry, 14, 407 (2001)
[54] J. Park, and H. Lee, Materials Science and Engineer C, 24, 311 (2004)
[55] F. Kezzoula, A. Hammouda, M. Kechouane, P. Simon, S.E.H. Abaidia, A. Keffous, R. Cherfi, H. Menari, and A. Manseri, Applied
Surface Science, 257, 9689 (2011)
[56] O. Tuzun Ozmen, M. Karaman, and R. Turan, Thin Solid Films, 551, 181 (2014)
[57] C. Gonc, alves, S.Charvet, A.Zeinert, M.Clin, K.Zellam, Thin Solid Films, 403, 91 (2002)

QR CODE