簡易檢索 / 詳目顯示

研究生: 莊勝衡
Sheng-Heng Chuang
論文名稱: 鹵化物/硫化物混合全固態電池之介面分析及相應軟包電池製作優化
Interfacial analysis into halide/sulfide based all-solid-state batteries and the fabrication of corresponding pouch cells
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 136
中文關鍵詞: 鋰離子電池全固態電池軟包電池可脫式片狀膜堆疊壓力製程壓力冷均壓介面阻抗鹵化物/硫化物雙夾層無溶劑式膜
外文關鍵詞: Lithium-ion battery, All-solid-state battery, Pouch cell, Freestanding film, Stack pressure, Fabrication pressure, Cold isostatic press, Interfacial impedance, Halide/sulfide bilayer, Solvent-free film
相關次數: 點閱:590下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全固態鋰金屬電池 (All-solid-state lithium metal battery, ASSLB) 具備高安全性和高能量密度的優勢,被視為下個世代最具發展潛力的儲能裝置。尤其軟包電池可以透過正極 | 隔離膜 | 負極重複堆疊進而達到提升能量密度的能力,儼然在現今成為商業及學界中的主流發展。然而,ASSLB面臨了許多挑戰,包括固態電解質 (Solid electrolyte, SE) 的不穩定、固體介面間的高阻抗以及受限於製膜工藝而影響到電池規模…等,從內部反應到外部組裝都仍然有待解決。
    本研究首先針對軟包電池膜的製備及組裝製程的部分進行探討。跟隨實驗室內製膜工藝的發展,使用可脫式片狀膜的技術,利用具可分離特性之高分子的基材,將塗佈好的SE (隔離膜) 獨立分離使用,從而單獨控制隔離膜的面積大小,加以利用對於各材料面積的控制,完整使用正極內的活物。再來為軟包電池組裝完成後堆疊壓力 (Stack pressure) 及加壓材料的選用,以一連串實驗確立使用40 MPa的堆疊壓力以及使用訂製鋼板作為加壓材料,最後添加以冷均壓 (Cold isostatic press, CIP) 施加製程壓力 (Fabrication pressure) 的步驟,將軟包電池的組裝標準化,供往後實驗室研究人員為用。
    研究第二個主軸是對ASSLB的一些參數進行測試,探討這些參數對於電池表現的影響。首先壓力的影響,發現製程壓力的增加對於電性的提升呈現正向關係,但堆疊壓力卻必須加壓到某種程度,才會在電性表現上有展現。此外,溫度對於消弭電池阻抗也有很顯著的影響,但阻抗卻會在降溫後再度上升,本實驗在55˚C的升溫環境下的軟包電池,展現出172.9 mAh/g的充電電容量,高於升溫前的電容量將近兩倍。鹵化物/硫化物雙夾層的應用,成功阻隔彼此對於正負兩極的介面反應,以雙夾層系統所組裝的軟包電池在55 ˚C的升溫環境下能夠擁有185 mAh/g的可逆電容量及82.65% 的首圈庫倫效率。由不同比例導電碳的實驗也證明得知,增加導電碳比例可以有效提升正極內導電度,減緩整體電池的極化現象,並獲得更高的正極使用率。最後為無溶劑式複合正極的應用,正極內均勻的導電碳分佈讓活物的利用率提升,並且展現出206.3 mAh/g的首圈充電電容量及79.34% 首圈庫倫效率。
    結合以上製程及介面間的測試,對於提升ASSLB的能量密度的目的又更進一步,即使對於使用高容量複合正極的電池仍有待探討,但卻為此領域的研究建立起一個具參考價值的平台。


    As one of the next generation’s most promising and crucial energy storage devices, all-solid-state lithium-ion batteries (ASSLBs) are renowned for their safety and high energy density. In addition, pouch cell has become mainstream due to its capability of stacking electrodes. However, the solutions to challenges that ASSLBs have faced, including instability of the solid electrolyte (SE), high interfacial impedance resulting from solid contacts, and limited scalability concerning film fabrication, are still not being widely addressed.
    This work first focuses on the fabrication of films and the assembly process of pouch cells. As the fabrication technique progressed in the lab, a freestanding film was demonstrated by using a polymer substrate with the property of getting separated to control the size of the SE (separator) independently. It’s allowed for precise control over the area of the separator and achievement for full utilization of the active materials in the cathode. Furthermore, stack pressure and compression materials are selected by going through a series of experiments, finally, with a stack pressure of 40 MPa and customized steel plates as the compression material. Lastly, an instrument, a cold isostatic press (CIP), is introduced to apply fabrication pressure, establishing the standard process for assembling pouch cells for future research in the lab.
    The second part of the study is to test various parameters of ASSLBs and investigate their impact on battery performance. The influence of pressure shows a positive correlation between fabrication pressure and electrochemical performance. However, stack pressure somehow shows a threshold effect, requiring a certain pressurization level to impact the cell further. In addition, temperature also has a significant effect on reducing battery interfacial impedance, which tends to increase again after cooling down. The pouch cell cycling under a heated environment at 55˚C has a charging capacity of 172.9 mAh/g, nearly double the capacity before heating. The configuration of a halide/sulfide bilayer has successfully prevented interfacial side reactions with the negative and positive electrodes, respectively, allowing the bilayer system to achieve a reversible capacity of 185 mAh/g and 82.65% for the first coulombic efficiency under a heated environment at 55˚C. Furthermore, increasing the proportion of conductive carbon in the composite electrode to improve the electronic conductivity successfully mitigated the overall polarization of the battery. Lastly, solvent-free composite cathodes with uniform distribution of conductive carbon led to better active material utilization, showing the first charging capacity of 206.3 mAh/g and the first coulombic efficiency of 79.34%.
    With the improvement of the assembly process and interfacial analysis mentioned above, the goal of increasing the energy density of ASSLBs is getting closer. Although further exploration is required for batteries with high-loading composite cathodes, this study has established a valid platform for ASSLBs.

    目錄 摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XXIII 第 1 章 緒論 1 1.1 前言 1 1.2 鋰離子二次電池 3 1.3 全固態鋰電池 5 1.3.1 全固態電池的優勢 6 1.3.2 全固態電池的挑戰 8 1.4 軟包電池 14 第 2 章 文獻回顧 17 2.1 固態電池中膜的製備 17 2.1.1 低極性溶劑與高分子 17 2.1.2 溶液澆鑄成膜 20 2.1.3 可脫式片狀膜 23 2.1.4 無溶劑式製膜 25 2.2 固態電池之介面問題 29 2.2.1 壓力與體積 29 2.2.2 人工添加改質層 34 2.3 軟包電池 41 2.4 研究動機與目的 46 2.5 Roadmap 47 第 3 章 實驗方法及實驗儀器 49 3.1 儀器設備 49 3.2 實驗藥品 50 3.3 實驗步驟與分析方法 51 3.3.1 複合正極膜塗布 51 3.3.2 固態膜雙層塗布 52 3.3.3 無溶劑製膜 53 3.3.4 KP-cell固態電池 54 3.3.5 全固態軟包電池 55 3.4 電化學測試 56 3.4.1 充放電測試 57 3.4.2 交流阻抗分析 57 第 4 章 全固態電池介面測試及製程優化 59 4.1 膜製程對於軟包電池組裝之影響 59 4.1.1 濕式雙層塗佈複合膜 59 4.1.2 濕式可脫式片狀膜 62 4.1.3 乾式可脫式片狀膜 63 4.2 軟包電池組裝製程優化 66 4.2.1 堆疊壓力大小之選用 66 4.2.2 施壓材料之選用 69 4.2.3 冷均壓的應用 70 4.3 全固態電池之介面測試 76 4.3.1 堆疊壓力與製程壓力對電池之影響 76 4.3.2 加溫環境下電池之效能 79 4.3.3 鹵化物/硫化物雙夾層 82 4.3.4 導電碳材比例之調整 86 4.3.5 乾式複合正極對電池之影響 89 4.4 全固態電池能量密度之提升 92 4.4.1 高容量複合正極測試 92 4.4.2 以材料重量對能量密度之評估 95 第 5 章 結論 97 第 6 章 未來展望 99 參考文獻 101

    參考文獻

    (1) : Hoesung Lee (Chair), K. C. U., Dipak Dasgupta (India/USA), Gerhard; Krinner (France/Germany), A. M. I., Peter Thorne (Ireland/United Kingdom), Christopher; Trisos (South Africa), J. R. S., Paulina Aldunce (Chile), Ko Barrett (USA), Gabriel Blanco; (Argentina), W. W. L. C. C., Sarah L. Connors (France/United Kingdom), Fatima Denton; (The Gambia), A. D.-N. S., David Dodman (Jamaica/United Kingdom/Netherlands),; Matthias Garschagen (Germany), O. G. G., Bronwyn Hayward (New Zealand), Christopher; Jones (United Kingdom), F. J. A., Thelma Krug (Brazil), Rodel Lasco (Philippines), June-Yi; Lee (Republic of Korea), V. M.-D. F., Malte Meinshausen (Australia/Germany), Katja; Mintenbeck (Germany), A. M. M., Friederike E. L. Otto (United Kingdom/Germany),; Minal Pathak (India), A. P. I., Elvira Poloczanska (UK/Australia), Hans-Otto Pörtner (Germany),; et al. Synthesis report of The Intergovernmental Panel on Climate Change (IPCC) sixth assessment report (AR6); 2023.
    (2) Owen, J. R. Rechargeable lithium batteries. Chemical Society Reviews 1997, 26 (4), 259-267.
    (3) Ikeda, H.; Saito, T.; Tamura, H. Proc. Manganese Dioxide Symp. IC sample Office, Cleveland, OH 1975, 1.
    (4) Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. nature 2001, 414 (6861), 359-367.
    (5) Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Insertion electrode materials for rechargeable lithium batteries. Advanced materials 1998, 10 (10), 725-763.
    (6) Julien, C.; Mauger, A.; Zaghib, K.; Groult, H. Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics 2014, 2 (1), 132-154. DOI: 10.3390/inorganics2010132.
    (7) Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. LixCoO2 (0<x⩽1): A new cathode material for batteries of high energy density. Solid State Ionics 1981, 3-4, 171-174. DOI: 10.1016/0167-2738(81)90077-1.
    (8) Thackeray, M. M.; David, W. I.; Bruce, P. G.; Goodenough, J. B. Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
    (9) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188.
    (10) Goodenough, J. B.; Park, K.-S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
    (11) Dominey, L. Current state of the art on lithium battery electrolytes. Industrial chemistry library 1994, 5, 137-165.
    (12) https://www.quantumscape.com/blog/solid-state-battery-landscape.
    (13) Janek, J.; Zeier, W. G. A solid future for battery development. Nature Energy 2016, 1 (9), 1-4.
    (14) Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. Journal of the electrochemical society 2004, 151 (11), A1969. Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Rechargeable lithium–sulfur batteries. Chemical reviews 2014, 114 (23), 11751-11787. Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau, F. F. Review on Li‐sulfur battery systems: An integral perspective. Advanced Energy Materials 2015, 5 (16), 1500212. Huang, C.-J.; Cheng, J.-H.; Su, W.-N.; Partovi-Azar, P.; Kuo, L.-Y.; Tsai, M.-C.; Lin, M.-H.; Jand, S. P.; Chan, T.-S.; Wu, N.-L. Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries. Journal of power sources 2021, 492, 229508.
    (15) Betz, J.; Brinkmann, J. P.; Nölle, R.; Lürenbaum, C.; Kolek, M.; Stan, M. C.; Winter, M.; Placke, T. Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Advanced energy materials 2019, 9 (21), 1900574. Zhang, X.-Q.; Wang, X.-M.; Li, B.-Q.; Shi, P.; Huang, J.-Q.; Chen, A.; Zhang, Q. Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. Journal of Materials Chemistry A 2020, 8 (8), 4283-4289. Huang, C.-J.; Thirumalraj, B.; Tao, H.-C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L.-M.; Wang, C.-C.; Wu, S.-H. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature Communications 2021, 12 (1), 1452.
    (16) Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H. K. Lithium‐ion conducting electrolyte salts for lithium batteries. Chemistry–A European Journal 2011, 17 (51), 14326-14346.
    (17) Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. A lithium superionic conductor. Nature materials 2011, 10 (9), 682-686.
    (18) Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J. L. Solid‐state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Advanced Energy Materials 2021, 11 (1), 2002689.
    (19) Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chemical reviews 2020, 120 (14), 6878-6933.
    (20) Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M. Interface in solid-state lithium battery: challenges, progress, and outlook. ACS applied materials & interfaces 2019, 11 (25), 22029-22050. Liu, D.-H.; Bai, Z.; Li, M.; Yu, A.; Luo, D.; Liu, W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews 2020, 49 (15), 5407-5445.
    (21) Zhang, W.; Schröder, D.; Arlt, T.; Manke, I.; Koerver, R.; Pinedo, R.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. (Electro) chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. Journal of Materials Chemistry A 2017, 5 (20), 9929-9936.
    (22) Koerver, R.; Zhang, W.; de Biasi, L.; Schweidler, S.; Kondrakov, A. O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W. G.; Janek, J. Chemo-mechanical expansion of lithium electrode materials–on the route to mechanically optimized all-solid-state batteries. Energy & Environmental Science 2018, 11 (8), 2142-2158.
    (23) Reimers, J. N.; Dahn, J. R. Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2. Journal of The Electrochemical Society 2019, 139 (8), 2091-2097. DOI: 10.1149/1.2221184.
    (24) Schipper, F.; Erickson, E. M.; Erk, C.; Shin, J.-Y.; Chesneau, F. F.; Aurbach, D. Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes. Journal of The Electrochemical Society 2016, 164 (1), A6220-A6228. DOI: 10.1149/2.0351701jes.
    (25) Jung, S.-K.; Gwon, H.; Lee, S.-S.; Kim, H.; Lee, J. C.; Chung, J. G.; Park, S. Y.; Aihara, Y.; Im, D. Understanding the effects of chemical reactions at the cathode–electrolyte interface in sulfide based all-solid-state batteries. Journal of Materials Chemistry A 2019, 7 (40), 22967-22976. DOI: 10.1039/c9ta08517c.
    (26) Brahmbhatt, T.; Yang, G.; Self, E. C.; Nanda, J. Cathode–sulfide solid electrolyte interfacial instability: challenges and solutions. Frontiers in Energy Research 2020, 8, 570754.
    (27) Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Interface Stability in Solid-State Batteries. Chemistry of Materials 2015, 28 (1), 266-273. DOI: 10.1021/acs.chemmater.5b04082.
    (28) Zhu, Y.; He, X.; Mo, Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl Mater Interfaces 2015, 7 (42), 23685-23693. DOI: 10.1021/acsami.5b07517.
    (29) Zhang, Z.; Chen, S.; Yang, J.; Wang, J.; Yao, L.; Yao, X.; Cui, P.; Xu, X. Interface Re-Engineering of Li10GeP2S12 Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. ACS Appl Mater Interfaces 2018, 10 (3), 2556-2565. DOI: 10.1021/acsami.7b16176.
    (30) Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L.; Nan, C. W. High-Conductivity Argyrodite Li6PS5Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium-Sulfur Batteries. ACS Appl Mater Interfaces 2018, 10 (49), 42279-42285. DOI: 10.1021/acsami.8b15121. Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E. R. H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M. Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte. ACS Appl Mater Interfaces 2018, 10 (39), 33296-33306. DOI: 10.1021/acsami.8b07476. Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1-5. DOI: 10.1016/j.ssi.2012.06.008. Rao, R. P.; Adams, S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. physica status solidi (a) 2011, 208 (8), 1804-1807. DOI: 10.1002/pssa.201001117.
    (31) Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4). DOI: 10.1038/nenergy.2016.30.
    (32) Liu, Q.; Dzwiniel, T. L.; Pupek, K. Z.; Zhang, Z. Corrosion/Passivation Behavior of Concentrated Ionic Liquid Electrolytes and Its Impact on the Li-Ion Battery Performance. Journal of The Electrochemical Society 2019, 166 (16), A3959-A3964. DOI: 10.1149/2.0161916jes.
    (33) Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4). DOI: 10.1038/natrevmats.2016.13.
    (34) Tan, D. H.; Banerjee, A.; Chen, Z.; Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nature nanotechnology 2020, 15 (3), 170-180.
    (35) Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 2011, 182 (1), 116-119. DOI: 10.1016/j.ssi.2010.10.013.
    (36) Lee, K.; Kim, S.; Park, J.; Park, S. H.; Coskun, A.; Jung, D. S.; Cho, W.; Choi, J. W. Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery. Journal of The Electrochemical Society 2017, 164 (9), A2075-A2081. DOI: 10.1149/2.1341709jes.
    (37) Lee, K.; Lee, J.; Choi, S.; Char, K.; Choi, J. W. Thiol–Ene Click Reaction for Fine Polarity Tuning of Polymeric Binders in Solution-Processed All-Solid-State Batteries. ACS Energy Letters 2018, 4 (1), 94-101. DOI: 10.1021/acsenergylett.8b01726.
    (38) Sakuda, A.; Kuratani, K.; Yamamoto, M.; Takahashi, M.; Takeuchi, T.; Kobayashi, H. All-solid-state battery electrode sheets prepared by a slurry coating process. Journal of The Electrochemical Society 2017, 164 (12), A2474.
    (39) Ates, T.; Keller, M.; Kulisch, J.; Adermann, T.; Passerini, S. Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Materials 2019, 17, 204-210. DOI: 10.1016/j.ensm.2018.11.011.
    (40) Lin, Y.; Wu, M.; Sun, J.; Zhang, L.; Jian, Q.; Zhao, T. A high‐capacity, long‐cycling all‐solid‐state lithium battery enabled by integrated cathode/ultrathin solid electrolyte. Advanced Energy Materials 2021, 11 (35), 2101612.
    (41) Nam, Y. J.; Cho, S.-J.; Oh, D. Y.; Lim, J.-M.; Kim, S. Y.; Song, J. H.; Lee, Y.-G.; Lee, S.-Y.; Jung, Y. S. Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano letters 2015, 15 (5), 3317-3323.
    (42) Kim, D. H.; Lee, Y.-H.; Song, Y. B.; Kwak, H.; Lee, S.-Y.; Jung, Y. S. Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries. ACS Energy Letters 2020, 5 (3), 718-727.
    (43) Liu, S.; Zhou, L.; Han, J.; Wen, K.; Guan, S.; Xue, C.; Zhang, Z.; Xu, B.; Lin, Y.; Shen, Y. Super Long‐Cycling All‐Solid‐State Battery with Thin Li6PS5Cl‐Based Electrolyte. Advanced Energy Materials 2022, 12 (25), 2200660.
    (44) Hippauf, F.; Schumm, B.; Doerfler, S.; Althues, H.; Fujiki, S.; Shiratsuchi, T.; Tsujimura, T.; Aihara, Y.; Kaskel, S. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Materials 2019, 21, 390-398.
    (45) Zhang, Z.; Wu, L.; Zhou, D.; Weng, W.; Yao, X. Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. Nano Lett 2021, 21 (12), 5233-5239. DOI: 10.1021/acs.nanolett.1c01344.
    (46) Yao, W.; Chouchane, M.; Li, W.; Bai, S.; Liu, Z.; Li, L.; Chen, A. X.; Sayahpour, B.; Shimizu, R.; Raghavendran, G. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating. Energy & Environmental Science 2023, 16 (4), 1620-1630.
    (47) Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S. Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries. Advanced Energy Materials 2019, 10 (1). DOI: 10.1002/aenm.201903253.
    (48) Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S. Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chem Rev 2020, 120 (14), 6878-6933. DOI: 10.1021/acs.chemrev.0c00101.
    (49) Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy 2020, 5 (4), 299-308. DOI: 10.1038/s41560-020-0575-z.
    (50) Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 2018, 318, 102-112. DOI: 10.1016/j.ssi.2017.07.005.
    (51) Fan, X.; Ji, X.; Han, F.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J.; Wang, C. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci Adv 2018, 4 (12), eaau9245. DOI: 10.1126/sciadv.aau9245.
    (52) Gao, Y.; Wang, D.; Li, Y. C.; Yu, Z.; Mallouk, T. E.; Wang, D. Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10 GeP2 S12 Solid Electrolyte Interface. Angew Chem Int Ed Engl 2018, 57 (41), 13608-13612. DOI: 10.1002/anie.201807304.
    (53) Nagao, M.; Hayashi, A.; Tatsumisago, M. Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2S-P2S5 Solid Electrolyte. Electrochemistry 2012, 80 (10), 734-736. DOI: 10.5796/electrochemistry.80.734.
    (54) Sakuma, M.; Suzuki, K.; Hirayama, M.; Kanno, R. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 2016, 285, 101-105. DOI: 10.1016/j.ssi.2015.07.010. Luo, S.; Wang, Z.; Li, X.; Liu, X.; Wang, H.; Ma, W.; Zhang, L.; Zhu, L.; Zhang, X. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat Commun 2021, 12 (1), 6968. DOI: 10.1038/s41467-021-27311-7.
    (55) Santhosha, A. L.; Medenbach, L.; Buchheim, J. R.; Adelhelm, P. The Indium−Lithium Electrode in Solid‐State Lithium‐Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability. Batteries & Supercaps 2019, 2 (6), 524-529. DOI: 10.1002/batt.201800149.
    (56) Zhang, W.; Schröder, D.; Arlt, T.; Manke, I.; Koerver, R.; Pinedo, R.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. Journal of Materials Chemistry A 2017, 5 (20), 9929-9936. DOI: 10.1039/c7ta02730c.
    (57) Wu, B.; Yang, Y.; Liu, D.; Niu, C.; Gross, M.; Seymour, L.; Lee, H.; Le, P. M. L.; Vo, T. D.; Deng, Z. D.; et al. Good Practices for Rechargeable Lithium Metal Batteries. Journal of The Electrochemical Society 2019, 166 (16), A4141-A4149. DOI: 10.1149/2.0691916jes.
    (58) Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G. All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. Journal of Power Sources 2018, 382, 160-175. DOI: 10.1016/j.jpowsour.2018.02.062.
    (59) Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy & Environmental Science 2021, 14 (5), 2577-2619.
    (60) Koç, T.; Marchini, F.; Rousse, G.; Dugas, R.; Tarascon, J.-M. In search of the best solid electrolyte-layered oxide pairing for assembling practical all-solid-state batteries. ACS Applied Energy Materials 2021, 4 (12), 13575-13585.
    (61) Homann, G.; Stolz, L.; Nair, J.; Laskovic, I. C.; Winter, M.; Kasnatscheew, J. Poly (ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure. Scientific reports 2020, 10 (1), 4390. Sahore, R.; Du, Z.; Chen, X. C.; Hawley, W. B.; Westover, A. S.; Dudney, N. J. Practical considerations for testing polymer electrolytes for high-energy solid-state batteries. ACS Energy Letters 2021, 6 (6), 2240-2247. Lewis, J. A.; Lee, C.; Liu, Y.; Han, S. Y.; Prakash, D.; Klein, E. J.; Lee, H.-W.; McDowell, M. T. Role of areal capacity in determining short circuiting of sulfide-based solid-state batteries. ACS applied materials & interfaces 2022, 14 (3), 4051-4060. Sahore, R.; Yang, G.; Chen, X. C.; Tsai, W.-Y.; Li, J.; Dudney, N. J.; Westover, A. A bilayer electrolyte design to enable high-areal-capacity composite cathodes in polymer electrolytes based solid-state lithium metal batteries. ACS Applied Energy Materials 2022, 5 (2), 1409-1413.
    (62) Nam, Y. J.; Oh, D. Y.; Jung, S. H.; Jung, Y. S. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry-and slurry-mixing processes. Journal of Power Sources 2018, 375, 93-101. Kim, K. T.; Kwon, T. Y.; Song, Y. B.; Kim, S.-M.; Byun, S. C.; Min, H.-S.; Kim, S. H.; Jung, Y. S. Wet-slurry fabrication using PVdF-HFP binder with sulfide electrolytes via synergetic cosolvent approach for all-solid-state batteries. Chemical Engineering Journal 2022, 450, 138047.
    (63) Gautam, A.; Ghidiu, M.; Suard, E.; Kraft, M. A.; Zeier, W. G. On the Lithium Distribution in Halide Superionic Argyrodites by Halide Incorporation in Li7–x PS6–x Cl x. ACS Applied Energy Materials 2021, 4 (7), 7309-7315. Gautam, A.; Sadowski, M.; Ghidiu, M.; Minafra, N.; Senyshyn, A.; Albe, K.; Zeier, W. G. Engineering the Site‐Disorder and Lithium Distribution in the Lithium Superionic Argyrodite Li6PS5Br. Advanced Energy Materials 2021, 11 (5), 2003369. Minafra, N.; Kraft, M. A.; Bernges, T.; Li, C.; Schlem, R.; Morgan, B. J.; Zeier, W. G. Local charge inhomogeneity and lithium distribution in the superionic argyrodites Li6PS5X (X= Cl, Br, I). Inorganic Chemistry 2020, 59 (15), 11009-11019.
    (64) Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 2011, 182 (1), 53-58. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C. Anomalous high ionic conductivity of nanoporous β-Li3PS4. Journal of the American Chemical Society 2013, 135 (3), 975-978.
    (65) Culver, S. P.; Squires, A. G.; Minafra, N.; Armstrong, C. W.; Krauskopf, T.; Böcher, F.; Li, C.; Morgan, B. J.; Zeier, W. G. Evidence for a Solid-Electrolyte Inductive Effect in the Superionic Conductor Li10Ge1–x Sn x P2S12. Journal of the American Chemical Society 2020, 142 (50), 21210-21219. Krauskopf, T.; Culver, S. P.; Zeier, W. G. Bottleneck of diffusion and inductive effects in Li10Ge1–x Sn x P2S12. Chemistry of Materials 2018, 30 (5), 1791-1798.
    (66) Riegger, L. M.; Schlem, R.; Sann, J.; Zeier, W. G.; Janek, J. Lithium‐metal anode instability of the superionic halide solid electrolytes and the implications for solid‐state batteries. Angewandte Chemie International Edition 2021, 60 (12), 6718-6723.
    (67) Rosenbach, C.; Walther, F.; Ruhl, J.; Hartmann, M.; Hendriks, T. A.; Ohno, S.; Janek, J.; Zeier, W. G. Visualizing the Chemical Incompatibility of Halide and Sulfide‐Based Electrolytes in Solid‐State Batteries. Advanced Energy Materials 2023, 13 (6), 2203673.

    QR CODE