簡易檢索 / 詳目顯示

研究生: 張良佑
Liang-You Zhang
論文名稱: 印刷電路板之自動化檢測機台
Automated Inspection Machine for Printed Circuit Boards
指導教授: 劉孟昆
Meng-Kun Liu
口試委員: 藍振洋
Chen-Yang Lan
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: Raspberry Pi 微控制器力量感測器自動化
外文關鍵詞: Raspberry Pi microcontroller, force sensors, automation
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於人工成本不斷地增加,再加上雇用人工時,往往會因為人為因素導致疏忽,進而造成一些問題,如生產效率低、生產成本上升、發生工安事故、檢測標準不一導致產品品質有好有壞…等。隨著科技的發展,再加上工業4.0的概念下,無論是原物料的輸入、產品製造的生產線及後續的檢測流程都逐漸往自動化發展,以達到降低生產成本、提高生產效率、提升產品良率…等目標。2020年,由於疫情的肆虐,使得人們減少外出、消費降低,然而全球的電動自行車市場是少數在疫情期間需求增加的市場之一,相關產品需求同樣也增加許多。主要是由於當時的人們選擇避免前往人多的地方,從原先在市區內的娛樂消費轉為郊區旅遊,以便捷的電動自行車取代傳統的大眾運輸工具。加上近年來全球暖化在各國所造成的影響日益嚴重,多國政府皆以政策推廣電動自行車,以達到減少碳排放的目標,使得電動自行車逐漸變為人們外出時的優先選擇。傳統的燃油車時代逐步走向終結,而電動車將成為未來的趨勢。
    本研究目的為建立一套可對合作企業AVE Mobility 的智能遠程顯示控制器(smart remote display control) 產品的電路板進行檢測的自動化檢測機台。由於疫情的影響使得勞動人口短缺,並且電動自行車市場中少量多樣的產品特性,造成產品的不同導致其電路板設計也會有所差異。勞動人口短缺加上產品少量多樣的特性,對於目前只有半自動化檢測機台的生產線造成很大的負荷,為了滿足客戶的客製化需求並且降低人力與生產成本,模組化與自動化的設計將會是本次研究的重點。


    In recent years, due to the continuous increase in labor costs and the potential for human errors in manual labor, various issues have arisen when employing human workers. These issues include low production efficiency, rising production costs, workplace accidents, inconsistent inspection standards leading to varying product quality, and more. With the advancement of technology and the concept of Industry 4.0, automation has become a growing trend in various aspects of production, from raw material input to manufacturing processes and subsequent inspection procedures. This automation aims to achieve goals such as reducing production costs, increasing production efficiency, and improving product quality.In the year 2020, the global COVID-19 pandemic led to reduced outings and decreased consumer spending. However, the electric bicycle market was among the few that experienced an increase in demand during this period. This was primarily because people opted to avoid crowded places and shifted from urban entertainment to suburban travel, with electric bicycles providing a convenient alternative to traditional public transportation. Furthermore, the escalating impacts of global warming have prompted governments worldwide to promote electric bicycles as part of their efforts to reduce carbon emissions. As a result, electric bicycles have become the preferred choice for commuting. The era of traditional fossil fuel vehicles is gradually coming to an end, with electric vehicles emerging as the future trend.
    The purpose of this study is to establish an automated testing machine for the intelligent remote display control product of the collaborative company AVE Mobility. This testing machine will be capable of inspecting the circuit boards of the product. The shortage of labor due to the pandemic and the diverse characteristics of products in the electric bicycle market have led to variations in circuit board designs. The combination of labor shortages and diverse product characteristics has placed a significant burden on production lines that currently only have semi-automated testing machines. To meet customer customization demands and reduce labor and production costs, the focus of this research will be on modular and automated design.

    摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機與目的 1.3 文獻回顧 1.3.1 接觸式感測器之文獻回顧 1.3.2 國內相關感測器的應用範圍 1.3.3 按壓測試機構的市場調查 1.3.4 力量感測器的調查 1.4 貢獻 1.5 論文架構 第二章 機構設計 2.1 PCB介紹與規格 2.1.1 設計需求 2.2 機台尺寸與外觀 2.3 按壓模組機構 2.3.1 按壓機構設計 2.3.2 凸輪設計 2.4 平台機構 2.5 傳動機構 2.5.1 平台傳動機構 2.5.2 待測電路板固定治具 2.6 施力機構設計 第三章 控制系統設計與實驗設備 3.1 軟體設計 3.1.1 Python程式語言 3.1.2 控制系統介面 3.1.3 控制架構與流程 3.2 實驗設備 3.2.1 Raspberry Pi 4 Model B 3.2.2 MCP3008數位類比轉換器 3.2.3 力量感測器 3.2.4 馬達與驅動器 第四章 研究方法與結果 4.1 感測器特性曲線測試與曲線擬合 4.2 按壓模組之按鍵測試 第五章 結論 5.1 結果討論 5.2 未來展望 參考文獻 附錄

    邱俊榮, "疫情對產業及就業市場影響之挑戰與因應," (in 繁體中文), 臺灣勞工季刊, no. 63, pp. 14-20, 2020.
    [2] I. Monitor, "COVID-19 and the world of work," Updated estimates and analysis, vol. 27, 2020.
    [3] O. Okorie, R. Subramoniam, F. Charnley, J. Patsavellas, D. Widdifield, and K. Salonitis, "Manufacturing in the time of COVID-19: an assessment of barriers and enablers," IEEE Engineering Management Review, vol. 48, no. 3, pp. 167-175, 2020.
    [4] S. J. Lim, "A Survey of Challenges and Response Strategies of Manufacturing Companies During the Covid-19 Pandemic," in 2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 2021: IEEE, pp. 528-532.
    [5] A. Uthra, "Autonomous Maintenance in Industrial Revolution 4.0 during Covid-19–A Real Time Approach," in 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), 2021: IEEE, pp. 53-58.
    [6] G. Westling and R. S. Johansson, "Factors influencing the force control during precision grip," Experimental brain research, vol. 53, pp. 277-284, 1984.
    [7] C.-H. Won, J.-H. Lee, and F. Saleheen, "Tactile sensing systems for tumor characterization: A review," IEEE Sensors Journal, vol. 21, no. 11, pp. 12578-12588, 2021.
    [8] M. I. Tiwana, S. J. Redmond, and N. H. Lovell, "A review of tactile sensing technologies with applications in biomedical engineering," Sensors and Actuators A: physical, vol. 179, pp. 17-31, 2012.
    [9] Z. Chu, P. Sarro, and S. Middelhoek, "Silicon three-axial tactile sensor," Sensors and Actuators A: Physical, vol. 54, no. 1-3, pp. 505-510, 1996.
    [10] M. Leineweber, G. Pelz, M. Schmidt, H. Kappert, and G. Zimmer, "New tactile sensor chip with silicone rubber cover," Sensors and Actuators A: Physical, vol. 84, no. 3, pp. 236-245, 2000.
    [11] H. Morimura, S. Shigematsu, and K. Machida, "A novel sensor cell architecture and sensing circuit scheme for capacitive fingerprint sensors," IEEE Journal of Solid-State Circuits, vol. 35, no. 5, pp. 724-731, 2000.
    [12] E. S. Kolesar and C. S. Dyson, "Object imaging with a piezoelectric robotic tactile sensor," Journal of microelectromechanical systems, vol. 4, no. 2, pp. 87-96, 1995.
    [13] S. Najarian, J. Dargahi, and A. A. Mehrizi, Artificial tactile sensing in biomedical engineering. McGraw-Hill Education, 2009.
    [14] M. H. Lee, "Tactile sensing: new directions, new challenges," The International journal of robotics research, vol. 19, no. 7, pp. 636-643, 2000.
    [15] J. Dargahi, M. Parameswaran, and S. Payandeh, "A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments," Journal of microelectromechanical systems, vol. 9, no. 3, pp. 329-335, 2000.
    [16] A. S. Naidu, R. V. Patel, and M. D. Naish, "Low-cost disposable tactile sensors for palpation in minimally invasive surgery," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 127-137, 2016.
    [17] S. Samaun, K. Wise, E. Nielsen, and J. Angell, "An IC piezoresistive pressure sensor for biomedical instrumentation," in 1971 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 1971, vol. 14: IEEE, pp. 104-105.
    [18] D. De Rossi, C. Domenici, and P. Pastacaldi, "Piezoelectric properties of dry human skin," IEEE transactions on electrical insulation, no. 3, pp. 511-517, 1986.
    [19] G. M. Krishna and K. Rajanna, "Tactile sensor based on piezoelectric resonance," IEEE sensors journal, vol. 4, no. 5, pp. 691-697, 2004.
    [20] S. Najarian, J. Dargahi, and X. Z. Zheng, "A novel method in measuring the stiffness of sensed objects with applications for biomedical robotic systems," THe international journal of medical robotics and computer assisted surgery, vol. 2, no. 1, pp. 84-90, 2006.
    [21] M. F. Barsky, D. Lindner, and R. Claus, "Robot gripper control system using PVDF piezoelectric sensors," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 36, no. 1, pp. 129-134, 1989.
    [22] M. Katz, Introduction to geometrical optics. World scientific, 2002.
    [23] K. Kamiyama, H. Kajimoto, M. Inami, N. Kawakami, and S. Tachi, "Development of a vision-based tactile sensor," IEEJ Transactions on Sensors and Micromachines, vol. 123, no. 1, pp. 16-22, 2003.
    [24] M. Ohka, Y. Mitsuya, Y. Matsunaga, and S. Takeuchi, "Sensing characteristics of an optical three-axis tactile sensor under combined loading," Robotica, vol. 22, no. 2, pp. 213-221, 2004.
    [25] N. J. Ferrier and R. W. Brockett, "Reconstructing the shape of a deformable membrane from image data," The International Journal of Robotics Research, vol. 19, no. 9, pp. 795-816, 2000.
    [26] Y. Ohmura, Y. Kuniyoshi, and A. Nagakubo, "Conformable and scalable tactile sensor skin for curved surfaces," in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006: IEEE, pp. 1348-1353.
    [27] J.-S. Heo, J.-H. Chung, and J.-J. Lee, "Tactile sensor arrays using fiber Bragg grating sensors," Sensors and Actuators A: Physical, vol. 126, no. 2, pp. 312-327, 2006.
    [28] E. Cheung and V. Lumelsky, "A sensitive skin system for motion control of robot arm manipulators," Robotics and autonomous systems, vol. 10, no. 1, pp. 9-32, 1992.
    [29] S. Begej, "Planar and finger-shaped optical tactile sensors for robotic applications," IEEE Journal on Robotics and Automation, vol. 4, no. 5, pp. 472-484, 1988.
    [30] 田朝元, "以PC為基礎之頸椎牽引機力量感測器設計與製作," 碩士, 電機工程所, 逢甲大學, 台中市, 2007. [Online]. Available: https://hdl.handle.net/11296/t2dy8c
    [31] 黃俊衛, "具振動及壓力感測之智慧感測裝置應用於自動研磨加工檢測," 碩士, 電機工程系, 南臺科技大學, 台南市, 2019. [Online]. Available: https://hdl.handle.net/11296/9vh4rk
    [32] 劉昂里, "利用薄膜壓力感測器監控訓練者的健身姿勢," 碩士, 數位創新碩士學位學程, 東海大學, 台中市, 2019. [Online]. Available: https://hdl.handle.net/11296/zt95u3
    [33] 吳君凱, "走路重心矯正器之研發," 碩士, 機電系統工程研究所, 國立臺南大學, 台南市, 2016. [Online]. Available: https://hdl.handle.net/11296/ara665
    [34] 瑞滄企業股份有限公司. "JSV-H1000簡易式按鍵觸感荷重計 " http://www.algol.com.tw/product_description.php?PNo=93&CNo=20&Protype=functional (accessed 07/21, 2023).
    [35] 瑞滄企業股份有限公司. "HF-2S & JSV-100N矽膠按鍵專用測定器." http://www.algol.com.tw/product_description.php?PNo=24 (accessed 07/21, 2023).
    [36] 詠欣有限公司. "FSH-B按鍵測試機." https://www.yscco.com.tw/product-detail-2728561.html (accessed 0721, 2023).
    [37] 台灣中澤公司. "1305VC 按鍵測試機." https://www.tn-testing.com.tw/%E7%B2%BE%E5%AF%86%E8%8D%B7%E9%87%8D%E8%A9%A6%E9%A9%97%E6%A9%9F/1305VC.html (accessed 07/21, 2023).
    [38] S. Electronics. "FlexiForce® Standard Model A201." https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLX-A201-A.pdf (accessed 07/21, 2023).
    [39] 麥思科技有限公司. "FlexiForce A201薄膜式力量感測片." https://www.memstec.com.tw/productDetail.php?PNo=105 (accessed 07/21, 2023).
    [40] 台灣物聯科技. "Force Sensitive Resistor – FSR400 Small 電阻式壓力感測器 SparkFun原廠." https://www.taiwaniot.com.tw/product/force-sensitive-resistor-fsr400-small-%E9%9B%BB%E9%98%BB%E5%BC%8F%E5%A3%93%E5%8A%9B%E6%84%9F%E6%B8%AC%E5%99%A8-%E7%BE%8E%E5%9C%8B-sparkfun-%E5%8E%9F%E8%A3%9D%E9%80%B2%E5%8F%A3/ (accessed 07/21, 2023).
    [41] I. ELECTRONICS. "FSR 400 Data Sheet." http://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/2010-10-26-DataSheet-FSR400-Layout2.pdf (accessed 07/21, 2023).
    [42] 傑森創工. "KEYES 電阻式薄膜壓力感測器模組." https://www.jmaker.com.tw/products/keyes-%E9%9B%BB%E9%98%BB%E5%BC%8F%E8%96%84%E8%86%9C%E5%A3%93%E5%8A%9B%E6%84%9F%E6%B8%AC%E5%99%A8%E6%A8%A1%E7%B5%84-0g-5kg-%E6%AF%94fsr402%E9%82%84%E6%96%B9%E4%BE%BF (accessed 07/21, 2023).
    [43] A. M. Ltd. "CD9 IoT Center Display." https://ave-mobility.com/product_cd9.html (accessed 07/21, 2023).
    [44] L. Dongguan Promax Electronics Technology Co. "Is Spring Force a Contact Force?" https://promaxpogopin.com/is-spring-force-a-contact-force/ (accessed 07/21, 2023).
    [45] 勝特力材料. "PH-1.2.3.4.5.6系列." http://images.100y.com.tw/pdf_file/11-HRH.pdf (accessed 08/04, 2023).
    [46] T. R. P. Foundation. "Raspberry Pi 4." https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed 07/21, 2023).
    [47] RICELEE. "MCP3008類比數位轉換器(SPI介面,8通道,10bit解析度)." https://ricelee.com/product/MCP3008-IC (accessed 07/21, 2023).
    [48] Alibaba. "China supply 1.5Nm close loop stepper motor nema 23 stepper motor CNC kit." https://www.alibaba.com/product-detail/China-supply-1-5Nm-close-loop_60740555352.html (accessed 07/21, 2023).

    無法下載圖示 全文公開日期 2028/08/17 (校內網路)
    全文公開日期 2028/08/17 (校外網路)
    全文公開日期 2028/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE