簡易檢索 / 詳目顯示

研究生: Addisu Alemayehu Assegie
Addisu Alemayehu Assegie
論文名稱: Enhancing Cycling Performance of Anode-free Lithium Metal Rechargeable Secondary Battery
Enhancing Cycling Performance of Anode-free Lithium Metal Rechargeable Secondary Battery
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: Wei-Nien Su
Wei-Nien Su
Shawn D. Lin
Shawn D. Lin
Nae-Lih Wu
Nae-Lih Wu
Tse-Chuan Chou
Tse-Chuan Chou
Hsisheng Teng
Hsisheng Teng
She-huang Wu
She-huang Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 192
中文關鍵詞: Anode-free batterylithium metalspin coatingpolyethylene oxidecopper anodechemical vapor depositionmultilayer graphenelithium nitrate additivelithium dendritedead lithium
外文關鍵詞: Anode-free battery, lithium metal, spin coating, polyethylene oxide, copper anode, chemical vapor deposition, multilayer graphene, lithium nitrate additive, lithium dendrite, dead lithium
相關次數: 點閱:356下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Abstract
Inventing new materials and battery design to enable rechargeable lithium battery with higher capacity, cycle life, efficiency, and energy density is of paramount importance. In fulfilling these principles’ Lithium metal is the most promising anode material in lithium metal battery due to its highest theoretical capacity (3860 mAh/g), lowest reduction potential (-3.04 V) vs Li/Li+(V) and lowest density (0.534 g/cm3). To realize lithium metal rechargeable secondary battery, tremendous research efforts exerted and a remarkable progress has been made. However, the safety challenge, low Coulombic efficiency, shallow cycling conditions, and poor cycle life limit the practical application. To overcome those bottleneck challenges and effectively use lithium metal anode, an anode-free lithium metal battery designed. The new battery architecture constructed in discharge state by pre-storing lithium in the cathode and lithium metal anode generated in-situ on copper current collector while charging. Realizing such a battery is an effective strategy to boost energy density, minimize cost and ease cell fabrication with safety. However, like lithium metal battery in-situ plated lithium grow to moss and whiskers like lithium dendrites on bare copper current collector upon cycling resulting from uneven Li deposition and inability of solid electrolyte interface (SEI) to control the stress exerted by dendritic Li growth. The formation of lithium dendrite induces low Coulombic efficiency, infinite volume expansion, electrolyte decomposition and even penetration of separator and short circuiting cell. To realize a dendrite free high energy density in-situ plated battery new strategies such as nanostructured current collector anode, using stable SEI layer forming additives, high concentration electrolytes, optimizing electrolyte solvent and using lithium rich or pre-lithiated cathodes to compensate lithium loss can be implemented. Our strategy will allow the newly battery design to gain widespread acceptance in electric vehicles, electronics, communication devise as a result of its simplicity to scale up, low cost, increase safety and a means to potential market.

In our first work, copper current collector coated with polyethylene oxide (PEO) film to stabilize lithium deposition and enhance cycle life. More importantly, the PEO film coating reinforces solid electrolyte interface (SEI) layer, encapsulate lithium film on copper and regulate the inevitable reaction of lithium with electrolyte. The modified electrode showed stable cycling of lithium with an average Coulombic efficiency of ~100% over 200 cycles and low voltage hysteresis (~30 mV) at a current density of 0.5 mA/cm2. Moreover, the anode-free battery proved experimentally by integrating it with the LiFePO4 cathode into a full cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with average Coulombic efficiency of 98.6% and 49% capacity retention at 100th cycle. In contrary a capacity retention of ~35% obtained when bare copper paired with the same cathode. These impressive enhanced cycle life and capacity retention results from the synergy of PEO film coating and high electrode-electrolyte interface compatibility. Our result opens up a new route to realize the anode-free batteries by modifying the copper anode with PEO polymer to achieve ever demanding yet safe interfacial chemistry and controlled dendrite formation.

The second motivation of this dissertation focus on engineering copper current collector with ultra-thin graphene layer with chemical vapor deposition (CVD) method as artificial layer to suppress lithium dendrite. Multilayer graphene film with superior strength, stability, and flexibility to facilitate uniform lithium-ion flux makes it an excellent choice to stabilize electrode interface. The new designed copper electrode with size higher than cathode size paired with commercial LiFePO4 cathode (mass loading ~12 mg/cm2), and ensures the first cycle discharge capacity of 147 and 151 mAh/g for bare and multilayer graphene protected electrode respectively which then alleviate the big hurdle (initial capacity loss) in an in-situ plated battery. After 100 round trip cycles, bare and multilayer graphene film protected copper retain ~ 46 and 61 % of their initial capacity respectively in an ether-based electrolyte at 0.1C rate.

In final work, the viability of rechargeable in-situ plated lithium metal battery on bare copper anode demonstrated by using lithium bis(trifluoromethanesulfonyl)imide(LiTFSI) salt in dimethoxy ethane(DME)/1,3-dioxolane (DOL) solvent and 4 wt % LiNO3 additive. The reduction of LiNO3 into lower order nitrite LixNOx and lithium nitride (Li3N) facilitate the formation of robust solid electrolyte interface (SEI) layer with high mechanical strength and stability. By using Cu/LiFePO4 cell without any pre-lithiation, the feasibility of anode-free lithium metal battery could deliver areal capacity of ~1.60 mAh/cm2 in its first cycle and retains about 0.863 mAh/cm2 capacity even at 100th cycles. In contrary, Cu/LFP cell in ether electrolyte without LiNO3 showed a rapid capacity fading. Moreover, by using a 4 wt % graphite composite in LiFePO4 cathode the 100th and 200th cycle capacity retention improved to 65.6 % and 33 % of its initial capacity respectively when cycled at 0.2 mA/cm2.


Abstract
Inventing new materials and battery design to enable rechargeable lithium battery with higher capacity, cycle life, efficiency, and energy density is of paramount importance. In fulfilling these principles’ Lithium metal is the most promising anode material in lithium metal battery due to its highest theoretical capacity (3860 mAh/g), lowest reduction potential (-3.04 V) vs Li/Li+(V) and lowest density (0.534 g/cm3). To realize lithium metal rechargeable secondary battery, tremendous research efforts exerted and a remarkable progress has been made. However, the safety challenge, low Coulombic efficiency, shallow cycling conditions, and poor cycle life limit the practical application. To overcome those bottleneck challenges and effectively use lithium metal anode, an anode-free lithium metal battery designed. The new battery architecture constructed in discharge state by pre-storing lithium in the cathode and lithium metal anode generated in-situ on copper current collector while charging. Realizing such a battery is an effective strategy to boost energy density, minimize cost and ease cell fabrication with safety. However, like lithium metal battery in-situ plated lithium grow to moss and whiskers like lithium dendrites on bare copper current collector upon cycling resulting from uneven Li deposition and inability of solid electrolyte interface (SEI) to control the stress exerted by dendritic Li growth. The formation of lithium dendrite induces low Coulombic efficiency, infinite volume expansion, electrolyte decomposition and even penetration of separator and short circuiting cell. To realize a dendrite free high energy density in-situ plated battery new strategies such as nanostructured current collector anode, using stable SEI layer forming additives, high concentration electrolytes, optimizing electrolyte solvent and using lithium rich or pre-lithiated cathodes to compensate lithium loss can be implemented. Our strategy will allow the newly battery design to gain widespread acceptance in electric vehicles, electronics, communication devise as a result of its simplicity to scale up, low cost, increase safety and a means to potential market.

In our first work, copper current collector coated with polyethylene oxide (PEO) film to stabilize lithium deposition and enhance cycle life. More importantly, the PEO film coating reinforces solid electrolyte interface (SEI) layer, encapsulate lithium film on copper and regulate the inevitable reaction of lithium with electrolyte. The modified electrode showed stable cycling of lithium with an average Coulombic efficiency of ~100% over 200 cycles and low voltage hysteresis (~30 mV) at a current density of 0.5 mA/cm2. Moreover, the anode-free battery proved experimentally by integrating it with the LiFePO4 cathode into a full cell configuration (Cu@PEO/LiFePO4). The new cell demonstrated stable cycling with average Coulombic efficiency of 98.6% and 49% capacity retention at 100th cycle. In contrary a capacity retention of ~35% obtained when bare copper paired with the same cathode. These impressive enhanced cycle life and capacity retention results from the synergy of PEO film coating and high electrode-electrolyte interface compatibility. Our result opens up a new route to realize the anode-free batteries by modifying the copper anode with PEO polymer to achieve ever demanding yet safe interfacial chemistry and controlled dendrite formation.

The second motivation of this dissertation focus on engineering copper current collector with ultra-thin graphene layer with chemical vapor deposition (CVD) method as artificial layer to suppress lithium dendrite. Multilayer graphene film with superior strength, stability, and flexibility to facilitate uniform lithium-ion flux makes it an excellent choice to stabilize electrode interface. The new designed copper electrode with size higher than cathode size paired with commercial LiFePO4 cathode (mass loading ~12 mg/cm2), and ensures the first cycle discharge capacity of 147 and 151 mAh/g for bare and multilayer graphene protected electrode respectively which then alleviate the big hurdle (initial capacity loss) in an in-situ plated battery. After 100 round trip cycles, bare and multilayer graphene film protected copper retain ~ 46 and 61 % of their initial capacity respectively in an ether-based electrolyte at 0.1C rate.

In final work, the viability of rechargeable in-situ plated lithium metal battery on bare copper anode demonstrated by using lithium bis(trifluoromethanesulfonyl)imide(LiTFSI) salt in dimethoxy ethane(DME)/1,3-dioxolane (DOL) solvent and 4 wt % LiNO3 additive. The reduction of LiNO3 into lower order nitrite LixNOx and lithium nitride (Li3N) facilitate the formation of robust solid electrolyte interface (SEI) layer with high mechanical strength and stability. By using Cu/LiFePO4 cell without any pre-lithiation, the feasibility of anode-free lithium metal battery could deliver areal capacity of ~1.60 mAh/cm2 in its first cycle and retains about 0.863 mAh/cm2 capacity even at 100th cycles. In contrary, Cu/LFP cell in ether electrolyte without LiNO3 showed a rapid capacity fading. Moreover, by using a 4 wt % graphite composite in LiFePO4 cathode the 100th and 200th cycle capacity retention improved to 65.6 % and 33 % of its initial capacity respectively when cycled at 0.2 mA/cm2.

Table of Contents 摘要 i Abstract iii Acknowledgments vi Table of Contents viii List of Figures xiv List of Tables xxvii List of Units and Abbreviations xxviii Chapter 1: Introduction 1 1.1 Alternative Energy Sources 1 1.2 Batteries as Energy Storage Devise 3 1.3 Lithium Secondary Batteries 4 1.3.1 Cathode Material 6 1.3.2 Layered Structure 6 1.3.3 Spinel Structured Cathode 7 1.3.4 Olivine Structure 7 1.3.5 Lithium Battery Anodes 8 1.4 Lithium Secondary Battery Electrolytes 12 1.4.1 Liquid Electrolyte 13 1.4.2 Ionic Conductivity 13 1.4.3 Electrolyte Solvent 14 1.4.4 Electrolyte Stability 14 1.5 SEI Formation 15 1.6 Al Corrosion 16 1.7 Hydrolysis Stability 17 1.8 Electrolyte Additives 17 Chapter 2: Opportunities and Challenges of Lithium Metal Batteries 19 2.1 Lithium Metal Batteries 19 2.2 Challenges of Lithium Metal Battery 21 2.3 Theory of Lithium Dendrite Growth 22 2.4 Effects of Li Dendrite 24 2.5 Lithium Dendrite Characterization 25 2.6 Strategies to Utilize Lithium Metal as Anode 26 2.6.1 Optimizing Li Salts 28 2.6.2 Optimizing Electrolyte Solvent 30 2.6.3 Electrolyte Additive 31 2.6.4 Separator Modification 34 2.6.5 Electrode Engineering 36 2.7 Materials to Battery Component Engineering 37 2.7.1 Polymers in Anode Electrode Structuring 37 2.7.2 Inorganic-organic Composite Material Coating 41 2.8 Solid Electrolyte 44 2.9 Anode-free Lithium Metal Battery 47 2.10 Motivation and Objectives of the Study 55 2.10.1 Motivation 55 2.10.2 Objectives 56 Chapter 3: Experimental Section and Characterization 58 3.1 General Experimental Section 58 3.1.1 Chemicals and Reagents 58 3.2 Electrode Fabrication 61 3.2.1 Cathode Fabrication 61 3.2.2 Nano-structured Anode Fabrication 61 3.3 Structure Characterization of Modified Anode 66 3.3.1 PEO Film Characterization 66 3.3.2 Graphene Film Characterization 67 3.4 Electrochemical Measurement and Characterization 67 3.4.1 Electrochemical Measurement 67 3.4.2 Lithium Morphology Characterization 68 3.5 SEI Characterization 68 Chapter 4: Polyethylene Oxide Film Coating Enhances Lithium Cycling Efficiency of an Anode-free Lithium Metal Battery 70 4.1 Introduction 70 4.2 Results and Discussion 75 4.2.1 Modified Electrode Morphology and Thickness Evolution 75 4.3 Half-cell Electrochemical Performance 80 4.3.1 Li/Cu-cell Electrochemical Impedance Spectroscopy 88 4.3.2 SEM of Li Morphology on Cu Collected from Li/Cu Cell 89 4.4 Full-cell Electrochemical Characterization 91 4.4.1 Full Cell Cyclic Voltammetry Test 92 4.4.2 Anode-free Cells Electrochemical Cycling Performance 94 4.4.3 Full-cell Electrochemical Impedance Spectroscopy 99 4.5 Morphology Characterization of Full-cell Anode 100 4.6 Summary 103 Chapter 5: Multilayer Graphene Stabilized Lithium Deposition for Anode-free Lithium Metal Battery 104 5.1 Introduction 104 5.2 Results and Discussion 109 5.2.1 Graphene Film Characterization 109 5.3 Half-cell Plating and Stripping Test 112 5.3 Lithium Morphology Characterization on Copper using Li-Cu cell 115 5.4 Anode-free Full Cell Electrochemical Characterization 117 5.5 Full Cell Morphology Characterization 123 5.6 Summary 126 Chapter 6: Lithium Nitrate Additive Stabilized In-situ Plated Lithium Metal on Copper Foil Anode 127 6.1 Introduction 127 6.2 Results and Discussions 131 6.2.1 Morphology of Lithium Deposited on Copper Electrode 131 6.2.2 Electrochemical Test 132 6.3 SEI Characterization 141 6.4 Summary 147 Chapter 7: Conclusions and Perspectives 148 7.1 Conclusions 148 7.2 Perspectives 151 References 154 Appendices 182 Approach I 183 Approach II 189 Approach III 190 List of Research Papers 191 Conference Presentations 192

References

[1] S. Chu, Y. Cui, N. Liu, The path towards sustainable energy, Nat Mater, 16 (2016) 16-22.
[2] R. Lee, The Outlook for Population Growth, Science, 333 (2011) 569-573.
[3] M. van der Hoeven, Energy and climate change—world energy outlook special report, Int. Energy Agency, (2015).
[4] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature, 488 (2012) 294.
[5] A.M. Fiore, e. al, Global air quality and climate, Chemical Society Reviews, 41 (2012) 6663-6683.
[6] T.R. Karl, K.E. Trenberth, Modern Global Climate Change, Science, 302 (2003) 1719-1723.
[7] S. Hernandez, M. Amin Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Syngas production from electrochemical reduction of CO2: current status and prospective implementation, Green Chemistry, 19 (2017) 2326-2346.
[8] C. Vincent, B. Scrosati, in, Arnold Press, London, 1997.
[9] J.-K. Park, Principles and applications of lithium secondary batteries, John Wiley & Sons, 2012.
[10] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density Materials Research Bulletin, 15 (1980) 783-789.
[11] M.A. J.M Tarascon, Issues and challenges facing rechargeable batteries, Nature, 414 (2001) 359-367.
[12] Y.-S. Hong, Y.J. Park, K.S. Ryu, S.H. Chang, Charge/discharge behavior of Li[Ni0.20Li0.20Mn0.60]O2 and Li[Co0.20Li0.27Mn0.53]O2 cathode materials in lithium secondary batteries, Solid State Ionics, 176 (2005) 1035-1042.
[13] A. Yamada, H. Koizumi, S.-i. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Room-temperature miscibility gap in LixFePO4, Nature Materials, 5 (2006) 357.
[14] M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 10 (1998) 725-763.
[15] L.C. M. N. Obrovac, Dinh Ba Le, J. R. Dahn, Alloy Design for Lithium-Ion Battery Anodes, ournal of The Electrochemical Society, , 154 (2007) A849-A855.
[16] E.J. Berg, C. Villevieille, D. Streich, S. Trabesinger, P. Novák, Rechargeable Batteries: Grasping for the Limits of Chemistry, Journal of The Electrochemical Society, 162 (2015) A2468-A2475.
[17] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Review, 104 (2004) 4303−4417.
[18] O. Borodin, T.R. Jow, M. Ue, K. Xu, Electrolytes for Lithium and Lithium-Ion Batteries, Springer, 2014.
[19] J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries†, Chem. Mat., 22 (2010) 587-603.
[20] A.M. Tripathi, W.-N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis, Chemical Society Reviews, 47 (2018) 736--851.
[21] X. Zhang, T.M. Devine, Passivation of Aluminum in Lithium-Ion Battery Electrolytes with LiBOB, Journal of The Electrochemical Society, 153 (2006) B365-B369.
[22] H. Yang, K. Kwon, T.M. Devine, J.W. Evans, Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance, Journal of The Electrochemical Society, 147 (2000) 4399-4407.
[23] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem Rev, 114 (2014) 11503-11618.
[24] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, 104 (2004) 4303-4418.
[25] B. Liu, J.-G. Zhang, W. Xu, Advancing Lithium Metal Batteries, Joule, 2 (2018) 833-845.
[26] M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-ion batteries, Springer, 2009.
[27] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chemical Reviews, 117 (2017) 10403-10473.
[28] W. Dong, W. Zhang, W. Zheng, X. Cui, T. Rojo, Q. Zhang, Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy, 2017.
[29] P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci., 9 (2016) 3221-3229.
[30] J.-H. Cheng, A.A. Assegie, C.-J. Huang, M.-H. Lin, A.M. Tripathi, C.-C. Wang, M.-T. Tang, Y.-F. Song, W.-N. Su, B.J. Hwang, Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy, The Journal of Physical Chemistry C, 121 (2017) 7761-7766.
[31] J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J.C. Andrews, Y. Cui, M.F. Toney, In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries, Journal of the American Chemical Society, 134 (2012) 6337-6343.
[32] X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, Y. Liu, A. Kushima, W.T. Liang, J.W. Wang, J.-H. Cho, E. Epstein, S.A. Dayeh, S.T. Picraux, T. Zhu, J. Li, J.P. Sullivan, J. Cumings, C. Wang, S.X. Mao, Z.Z. Ye, S. Zhang, J.Y. Huang, Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation, Nano Letters, 11 (2011) 3312-3318.
[33] S. Chandrashekar, N.M. Trease, H.J. Chang, L.-S. Du, C.P. Grey, A. Jerschow, 7Li MRI of Li batteries reveals location of microstructural lithium, Nature Materials, 11 (2012) 311.
[34] R. Bhattacharyya, B. Key, H. Chen, A.S. Best, A.F. Hollenkamp, C.P. Grey, In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries, Nature Materials, 9 (2010) 504-510.
[35] D.S. Eastwood, P.M. Bayley, H.J. Chang, O.O. Taiwo, J. Vila-Comamala, D.J.L. Brett, C. Rau, P.J. Withers, P.R. Shearing, C.P. Grey, P.D. Lee, Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging, Chemical Communications, 51 (2015) 266-268.
[36] L.M. Suo, Y.S. Hu, H. Li, M. Armand, L.Q. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4 (2013) 1481.
[37] J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, High rate and stable cycling of lithium metal anode, Nat. Commun., 6 (2015) 6362.
[38] P. Liu, Q. Ma, Z. Fang, J. Ma, Y.-S. Hu, Z.-B. Zhou, H. Li, X.-J. Huang, L.-Q. Chen, Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes, Chinese Physics B, 25 (2016) 078203.
[39] E. Markevich, G. Salitra, D. Aurbach, Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries, ACS Energy Letters, 2 (2017) 1337-1345.
[40] G. Yan, X. Li, Z. Wang, H. Guo, J. Wang, Compatibility of Graphite with 1,3-(1,1,2,2-Tetrafluoroethoxy)propane and Fluoroethylene Carbonate as Cosolvents for Nonaqueous Electrolyte in Lithium-Ion Batteries, The Journal of Physical Chemistry C, 118 (2014) 6586-6593.
[41] C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid, Adv Mater, 29 (2017) 1701169.
[42] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat Mater, 8 (2009) 621-629.
[43] J.-W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, Ionic Liquid Electrolytes for Lithium–Sulfur Batteries, The Journal of Physical Chemistry C, 117 (2013) 20531-20541.
[44] M.V. Fedorov, A.A. Kornyshev, Ionic liquids at electrified interfaces, Chem Rev, 114 (2014) 2978-3036.
[45] A. Basile, A.I. Bhatt, A.P. O'Mullane, Stabilizing lithium metal using ionic liquids for long-lived batteries, Nat Commun, 7 (2016) 11794.
[46] I. Osada, H. de Vries, B. Scrosati, S. Passerini, Ionic-Liquid-Based Polymer Electrolytes for Battery Applications, Angew Chem Int Ed Engl, 55 (2016) 500-513.
[47] J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.-G. Zhang, W. Xu, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nature Energy, 2 (2017) 17012.
[48] Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nature Materials, 13 (2014) 961-969.
[49] S. Choudhury, L.A. Archer, Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities, Advanced Electronic Materials, 2 (2016) 1500246.
[50] H. Yang, C. Guo, A. Naveed, J. Lei, J. Yang, Y. Nuli, J. Wang, Recent progress and perspective on lithium metal anode protection, Energy Storage Materials, 14 (2018) 199-221.
[51] L. Xia, Y. Xia, C. Wang, H. Hu, S. Lee, Q. Yu, H. Chen, Z. Liu, 5 V-Class Electrolytes Based on Fluorinated Solvents for Li-Ion Batteries with Excellent Cyclability, ChemElectroChem, 2 (2015) 1707-1712.
[52] X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries, Advanced Functional Materials, 27 (2017) 1605989.
[53] X. Ren, Y. Zhang, M.H. Engelhard, Q. Li, J.-G. Zhang, W. Xu, Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF6 and Cyclic Carbonate Additives, ACS Energy Letters, 3 (2018) 14-19.
[54] S.S. Zhang, Role of LiNO3 in rechargeable lithium/sulfur battery, Electrochimica Acta, 70 (2012) 344-348.
[55] S.S. Zhang, Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte, Journal of The Electrochemical Society, 159 (2012) A920-A923.
[56] T. Jaumann, J. Balach, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Role of 1,3-Dioxolane and LiNO3Addition on the Long Term Stability of Nanostructured Silicon/Carbon Anodes for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, 163 (2016) A557-A564.
[57] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat Commun, 6 (2015) 7436.
[58] S. Xiong, K. Xie, Y. Diao, X. Hong, Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries, Journal of Power Sources, 246 (2014) 840-845.
[59] C.-Z. Zhao, X.-B. Cheng, R. Zhang, H.-J. Peng, J.-Q. Huang, R. Ran, Z.-H. Huang, F. Wei, Q. Zhang, Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode, Energy Storage Materials, 3 (2016) 77-84.
[60] M. Agostini, B. Scrosati, J. Hassoun, An Advanced Lithium-Ion Sulfur Battery for High Energy Storage, Advanced Energy Materials, 5 (2015) 1500481.
[61] F. Ding, W. Xu, X.L. Chen, J. Zhang, Y.Y. Shao, M.H. Engelhard, Y.H. Zhang, T.A. Blake, G.L. Graff, X.J. Liu, J.G. Zhang, Effects of Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield Mechanism, Journal of Physical Chemistry C, 118 (2014) 4043-4049.
[62] S. Yoon, J. Lee, S.-O. Kim, H.-J. Sohn, Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg co-deposition and addition of HF acid in electrolyte, Electrochimica Acta, 53 (2008) 2501-2506.
[63] M. Ishikawa, S. Yoshitake, M. Morita, Y. Matsuda, In Situ Scanning Vibrating Electrode Technique for the Characterization of Interface Between Lithium Electrode and Electrolytes Containing Additives, Journal of The Electrochemical Society, 141 (1994) L159-L161.
[64] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat Commun, 6 (2015) 7436-7442.
[65] F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135 (2013) 4450-4456.
[66] S.O. Tung, S. Ho, M. Yang, R.L. Zhang, N.A. Kotov, A dendrite-suppressing composite ion conductor from aramid nanofibres, Nat. Commun., 6 (2015) 6152-6158.
[67] K. Liu, P. Bai, M.Z. Bazant, C.-A. Wang, J. Li, A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm-2 observed in situ in a capillary cell, Journal of Materials Chemistry A, 5 (2017) 4300-4307.
[68] Y. Liu, Q. Liu, L. Xin, Y. Liu, F. Yang, E.A. Stach, J. Xie, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction, Nature Energy, 2 (2017) 17083.
[69] K. Liu, W. Liu, Y. Qiu, B. Kong, Y. Sun, Z. Chen, D. Zhuo, D. Lin, Y. Cui, Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries, Science Advances, 3 (2017) e1601978.
[70] H. Duan, Y.-X. Yin, Y. Shi, P.-F. Wang, X.-D. Zhang, C.-P. Yang, J.-L. Shi, R. Wen, Y.-G. Guo, L.-J. Wan, Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers, Journal of the American Chemical Society, 140 (2018) 82-85.
[71] Q. Shi, Y. Zhong, M. Wu, H. Wang, H. Wang, High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes, Proceedings of the National Academy of Sciences, (2018) 201803634.
[72] X.-Q. Zhang, X.-B. Cheng, Q. Zhang, Advances in Interfaces between Li Metal Anode and Electrolyte, Advanced Materials Interfaces, 5 (2018) 1701097.
[73] J. Luo, C.-C. Fang, N.-L. Wu, High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes, Advanced Energy Materials, (2017) 1701482.
[74] R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao, C. Yan, J.-Q. Huang, Artificial Soft-Rigid Protective Layer for Dendrite-Free Lithium Metal Anode, Advanced Functional Materials, 28 (2018) 1705838.
[75] N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes, Adv Mater, 28 (2016) 1853-1858.
[76] G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi, Z. Chen, A.D. Sendek, H.-W. Lee, Z. Lu, H. Schneider, M.M. Safont-Sempere, S. Chu, Z. Bao, Y. Cui, High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating, ACS Energy Letters, 1 (2016) 1247-1255.
[77] G. Ma, Z. Wen, Q. Wang, C. Shen, J. Jin, X. Wu, Enhanced cycle performance of a Li-S battery based on a protected lithium anode, Journal of Materials Chemistry A, 2 (2014) 19355-19359.
[78] S. Choudhury, R. Mangal, A. Agrawal, L.A. Archer, A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles, Nat. Commun., 6 (2015) 10101.
[79] B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, J. Zhu, Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes, Adv Mater, 29 (2017) 1603755.
[80] K. Liu, A. Pei, H.R. Lee, B. Kong, N. Liu, D. Lin, Y. Liu, C. Liu, P.-c. Hsu, Z. Bao, Y. Cui, Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer, Journal of the American Chemical Society, 139 (2017) 4815-4820.
[81] W. Liu, D. Lin, A. Pei, Y. Cui, Stabilizing Lithium Metal Anodes by Uniform Li-ion Flux Distribution in Nanochannel Confinement, Journal of the American Chemical Society, 138 (2016) 15443-15450.
[82] P. Zou, Y. Wang, S.-W. Chiang, X. Wang, F. Kang, C. Yang, Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries, Nat. Commun., 9 (2018) 464.
[83] J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao, Y. Cui, Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability, J Am Chem Soc, 139 (2017) 11550-11558.
[84] D. Lin, Y. Liu, W. Chen, G. Zhou, K. Liu, B. Dunn, Y. Cui, Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon, Nano Lett, 17 (2017) 3731-3737.
[85] K. Park, J.B. Goodenough, Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N, Advanced Energy Materials, (2017) 1700732.
[86] Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt, Y. Cui, An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes, Adv Mater, 29 (2017) 1605531.
[87] L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao, J. Li, Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries, Journal of Power Sources, 342 (2017) 175-182.
[88] E. Kazyak, K.N. Wood, N.P. Dasgupta, Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments, Chem. Mat., 27 (2015) 6457-6462.
[89] S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang, W. Zhang, Lithiophilic Cu-CuO-Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes, Adv. Mater., 30 (2018) 1705830.
[90] E. Cha, M.D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries, Nature Nanotechnology, (2018).
[91] S. Liu, X. Xia, Y. Zhong, S. Deng, Z. Yao, L. Zhang, X.-B. Cheng, X. Wang, Q. Zhang, J. Tu, 3D TiC/C Core/Shell Nanowire Skeleton for Dendrite-Free and Long-Life Lithium Metal Anode, Advanced Energy Materials, 8 (2018) 1702322.
[92] J.-H. Kim, H.-K. Kang, S.-G. Woo, G. Jeong, M.-S. Park, K.J. Kim, J.-S. Yu, T. Yim, Y.N. Jo, H. Kim, K. Zhu, Y.-J. Kim, Oriented TiO2 nanotubes as a lithium metal storage medium, Journal of Electroanalytical Chemistry, 726 (2014) 51-54.
[93] B. Hong, H. Fan, X.-B. Cheng, X. Yan, S. Hong, Q. Dong, C. Gao, Z. Zhang, Y. Lai, Q. Zhang, Spatially Uniform Deposition of Lithium Metal in 3D Janus Hosts, Energy Storage Materials, (2018) 259-266.
[94] K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nature Energy, 1 (2016) 16010.
[95] C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode, Adv Mater, 29 (2017) 1702714.
[96] R. Zhang, X. Chen, X. Shen, X.-Q. Zhang, X.-R. Chen, X.-B. Cheng, C. Yan, C.-Z. Zhao, Q. Zhang, Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries, Joule, 2 (2018) 764-777.
[97] S.S. Zhang, X. Fan, C. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery, Electrochimica Acta, 258 (2017) 1201-1207.
[98] X. Liang, Q. Pang, I.R. Kochetkov, M.S. Sempere, H. Huang, X. Sun, L.F. Nazar, A facile surface chemistry route to a stabilized lithium metal anode, Nature Energy, 2 (2017) 17119.
[99] S. Liu, X. Zhang, R. Li, L. Gao, J. Luo, Dendrite-free Li metal anode by lowering deposition interface energy with Cu 99 Zn alloy coating, Energy Storage Materials, 14 (2018) 143-148.
[100] X.L. Ji, D.Y. Liu, D.G. Prendiville, Y.C. Zhang, X.N. Liu, G.D. Stucky, Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition, Nano Today, 7 (2012) 10-20.
[101] L. Liu, Y.-X. Yin, J.-Y. Li, N.-W. Li, X.-X. Zeng, H. Ye, Y.-G. Guo, L.-J. Wan, Free-Standing Hollow Carbon Fibers as High-Capacity Containers for Stable Lithium Metal Anodes, Joule, 1 (2017) 563-575.
[102] S. Liu, A. Wang, Q. Li, J. Wu, K. Chiou, J. Huang, J. Luo, Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes, Joule, 2 (2018) 184-193.
[103] G. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat Nano, 9 (2014) 618-623.
[104] H. Ye, S. Xin, Y.X. Yin, J.Y. Li, Y.G. Guo, L.J. Wan, Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons, J Am Chem Soc, 139 (2017) 5916-5922.
[105] R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang, C. Yan, Q. Zhang, Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes, Angew. Chem. Int. Ed., 129 (2017) 7872-7876.
[106] D. Lin, Y. Liu, Z. Liang, H.W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat Nanotechnol, 11 (2016) 626-632.
[107] J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi, A. Pei, J. Sun, R. Zhang, B. Kong, R. Subbaraman, J. Christensen, Y. Cui, Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode, Science Advances, 3 (2017) aao3170
[108] D. Lin, Y. Liu, W. Chen, G. Zhou, K. Liu, B. Dunn, Y. Cui, Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon, Nano Letters, 17 (2017) 3731-3737.
[109] Q. Yun, Y.B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q.H. Yang, Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes, Adv Mater, 28 (2016) 6932-6939.
[110] R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang, C. Yan, Q. Zhang, Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes, Angew Chem Int Ed Engl, 56 (2017) 7764-7768.
[111] T.-T. Zuo, Y.-X. Yin, S.-H. Wang, P.-F. Wang, X. Yang, J. Liu, C.-P. Yang, Y.-G. Guo, Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes, Nano Letters, 18 (2018) 297-301.
[112] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nature Reviews Materials, 2 (2017) 16103-16119.
[113] J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Thin-film lithium and lithium-ion batteries, Solid State Ionics, 135 (2000) 33-45.
[114] J. Zheng, M. Tang, Y.Y. Hu, Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes, Angew Chem Int Ed Engl, 55 (2016) 12538-12542.
[115] Y. Li, B. Xu, H. Xu, H. Duan, X. Lu, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram, J.B. Goodenough, Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries, Angew Chem Int Ed Engl, 56 (2017) 753-756.
[116] J. Zhang, X. Zang, H. Wen, T. Dong, J. Chai, Y. Li, B. Chen, J. Zhao, S. Dong, J. Ma, L. Yue, Z. Liu, X. Guo, G. Cui, L. Chen, High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery, J. Mater. Chem. A, 5 (2017) 4940-4948.
[117] K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Y. Li, E.D. Wachsman, L. Hu, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proceedings of the National Academy of Sciences, 113 (2016) 7094-7099.
[118] X. Han, Y. Gong, K. Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nature Materials, (2016) 4821.
[119] Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J.B. Goodenough, Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries, Journal of the American Chemical Society, 140 (2018) 6448-6455.
[120] S. Wang, H. Xu, W. Li, A. Dolocan, A. Manthiram, Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences, Journal of the American Chemical Society, 140 (2018) 250-257.
[121] C. Yang, L. Zhang, B. Liu, S. Xu, T. Hamann, D. McOwen, J. Dai, W. Luo, Y. Gong, E.D. Wachsman, L. Hu, Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework, Proc Natl Acad Sci U S A, 115 (2018) 3770-3775.
[122] S. Xu, D.W. McOwen, C. Wang, L. Zhang, W. Luo, C. Chen, Y. Li, Y. Gong, J. Dai, Y. Kuang, C. Yang, T.R. Hamann, E.D. Wachsman, L. Hu, Three-Dimensional, Solid-State Mixed Electron–Ion Conductive Framework for Lithium Metal Anode, Nano Letters, 18 (2018) 3926-3933.
[123] W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, J.B. Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte, J Am Chem Soc, 138 (2016) 9385-9388.
[124] K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Science Advances, 3 (2017) e1601659.
[125] B.J. Neudecker, N.J. Dudney, J.B. Bates, “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode, Journal of The Electrochemical Society, 147 (2000) 517-523.
[126] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.-G. Zhang, Anode-Free Rechargeable Lithium Metal Batteries, Advanced Functional Materials, 26 (2016) 7094-7102.
[127] S.S. Zhang, X. Fan, C. Wang, An in-situ enabled lithium metal battery by plating lithium on a copper current collector, Electrochemistry Communications, 89 (2018) 23-26.
[128] Z.L. Brown, S. Jurng, B.L. Lucht, Investigation of the Lithium Solid Electrolyte Interphase in Vinylene Carbonate Electrolytes Using Cu||LiFePO4 Cells, Journal of The Electrochemical Society, 164 (2017) A2186-A2189.
[129] A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale, 10 (2018) 6125-6138.
[130] G. Vitins, E.A. Raekelboom, M.T. Weller, J.R. Owen, Li2CuO2 as an additive for capacity enhancement of lithium ion cells, Journal of Power Sources, 119-121 (2003) 938-942.
[131] S.S. Zhang, Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor, Journal of Power Sources, 343 (2017) 322-328.
[132] A. Abouimrane, Y. Cui, Z. Chen, I. Belharouak, H.B. Yahia, H. Wu, R. Assary, L.A. Curtiss, K. Amine, Enabling high energy density Li-ion batteries through Li 2 O activation, Nano Energy, 27 (2016) 196-201.
[133] M.-S. Park, Y.-G. Lim, J.-H. Kim, Y.-J. Kim, J. Cho, J.-S. Kim, A Novel Lithium-Doping Approach for an Advanced Lithium Ion Capacitor, Advanced Energy Materials, 1 (2011) 1002-1006.
[134] Y.-G. Lim, D. Kim, J.-M. Lim, J.-S. Kim, J.-S. Yu, Y.-J. Kim, D. Byun, M. Cho, K. Cho, M.-S. Park, Anti-fluorite Li6CoO4 as an alternative lithium source for lithium ion capacitors: an experimental and first principles study, Journal of Materials Chemistry A, 3 (2015) 12377-12385.
[135] S.S. Zhang, A cost-effective approach for practically viable Li-ion capacitors by using Li2S as an in situ Li-ion source material, Journal of Materials Chemistry A, 5 (2017) 14286-14293.
[136] P. Jezowski, K. Fic, O. Crosnier, T. Brousse, F. Beguin, Lithium rhenium(vii) oxide as a novel material for graphite pre-lithiation in high performance lithium-ion capacitors, Journal of Materials Chemistry A, 4 (2016) 12609-12615.
[137] M.-S. Park, Y.-G. Lim, J.-W. Park, J.-S. Kim, J.-W. Lee, J.H. Kim, S.X. Dou, Y.-J. Kim, Li2RuO3 as an Additive for High-Energy Lithium-Ion Capacitors, The Journal of Physical Chemistry C, 117 (2013) 11471-11478.
[138] C. Yan, X.B. Cheng, Y. Tian, X. Chen, X.Q. Zhang, W.J. Li, J.Q. Huang, Q. Zhang, Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition, Adv Mater, (2018) 1707629.
[139] A.P. Cohn, N. Muralidharan, R. Carter, K. Share, C.L. Pint, Anode-Free Sodium Battery through in Situ Plating of Sodium Metal, Nano Lett, 17 (2017) 1296-1301.
[140] S. Liu, S. Tang, X. Zhang, A. Wang, Q.H. Yang, J. Luo, Porous Al Current Collector for Dendrite-Free Na Metal Anodes, Nano Lett, 17 (2017) 5862-5868.
[141] A. Rudola, S.R. Gajjela, P. Balaya, High energy density in - situ sodium plated battery with current collector foil as anode, Electrochemistry Communications, 86 (2018) 157-160.
[142] S. Tang, Z. Qiu, X.-Y. Wang, Y. Gu, X.-G. Zhang, W.-W. Wang, J.-W. Yan, M.-S. Zheng, Q.-F. Dong, B.-W. Mao, A Room-Temperature Sodium Metal Anode Enabled by a Sodiophilic Layer, Nano Energy, (2018) 101-106.
[143] W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition, Carbon, 49 (2011) 4122-4130.
[144] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery, Electrochimica Acta, 136 (2014) 274-285.
[145] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.
[146] A.S. ARICÒ, P. BRUCE, B. SCROSATI, J.-M. TARASCON, W.V. SCHALKWIJK, Nanostructured materials for advanced energy conversion and storage devices nature materials 4(2005) 366-377.
[147] N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors, Angew Chem Int Ed Engl, 51 (2012) 9994-10024.
[148] Y. Tang, Y. Zhang, X. Rui, D. Qi, Y. Luo, W.R. Leow, S. Chen, J. Guo, J. Wei, W. Li, J. Deng, Y. Lai, B. Ma, X. Chen, Conductive Inks Based on a Lithium Titanate Nanotube Gel for High-Rate Lithium-Ion Batteries with Customized Configuration, Adv. Mater., 28 (2016) 1567-1576.
[149] Y. Tang, Y. Zhang, J. Deng, D. Qi, W.R. Leow, J. Wei, S. Yin, Z. Dong, R. Yazami, Z. Chen, X. Chen, Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance To Achieve High-Rate and Long-Life Lithium-Ion Batteries, Angewandte Chemie International Edition, 53 (2014) 13488-13492.
[150] Y. Zhang, O.I. Malyi, Y. Tang, J. Wei, Z. Zhu, H. Xia, W. Li, J. Guo, X. Zhou, Z. Chen, C. Persson, X. Chen, Reducing the Charge Carrier Transport Barrier in Functionally Layer-Graded Electrodes, Angew Chem Int Ed Engl, 56 (2017) 14847-14852.
[151] W. Xu, J.L. Wang, F. Ding, X.L. Chen, E. Nasybutin, Y.H. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, 7 (2014) 513-537.
[152] K. Yan, H.W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu, Y. Cui, Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode, Nano Lett, 14 (2014) 6016-6022.
[153] C.S. Nimisha, K.Y. Rao, G. Venkatesh, G.M. Rao, N. Munichandraiah, Sputter deposited LiPON thin films from powder target as electrolyte for thin film battery applications, Thin Solid Films, 519 (2011) 3401-3406.
[154] Y. Su, J. Falgenhauer, A. Polity, T. Leichtweiß, A. Kronenberger, J. Obel, S. Zhou, D. Schlettwein, J. Janek, B.K. Meyer, LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering, Solid State Ionics, 282 (2015) 63-69.
[155] H. Kim, G. Jeong, Y.U. Kim, J.H. Kim, C.M. Park, H.J. Sohn, Metallic anodes for next generation secondary batteries, Chem Soc Rev, 42 (2013) 9011-9034.
[156] S. Chandrashekar, N.M. Trease, H.J. Chang, L.S. Du, C.P. Grey, A. Jerschow, 7Li MRI of Li batteries reveals location of microstructural lithium, Nat Mater, 11 (2012) 311-315.
[157] H.J. Chang, A.J. Ilott, N.M. Trease, M. Mohammadi, A. Jerschow, C.P. Grey, Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using Li-7 MRI, J. Am. Chem. Soc., 137 (2015) 15209-15216.
[158] J. Steiger, D. Kramer, R. Mönig, Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution, Electrochimica Acta, 136 (2014) 529-536.
[159] S.J. Harris, A. Timmons, D.R. Baker, C. Monroe, Direct in situ measurements of Li transport in Li-ion battery negative electrodes, Chemical Physics Letters, 485 (2010) 265-274.
[160] M. Motoyama, M. Ejiri, Y. Iriyama, Modeling the Nucleation and Growth of Li at Metal Current Collector/LiPON Interfaces, Journal of The Electrochemical Society, 162 (2015) A7067-A7071.
[161] F. Orsini, A. Du Pasquier, B. Beaudoin, J.M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, P. Notten, In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries, Journal of Power Sources, 76 (1998) 19-29.
[162] A.J. Leenheer, K.L. Jungjohann, K.R. Zavadil, J.P. Sullivan, C.T. Harris, Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy, ACS nano, 9 (2015) 4379-4389.
[163] B.L. Mehdi, J. Qian, E. Nasybulin, C. Park, D.A. Welch, R. Faller, H. Mehta, W.A. Henderson, W. Xu, C.M. Wang, J.E. Evans, J. Liu, J.G. Zhang, K.T. Mueller, N.D. Browning, Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM, Nano letters, 15 (2015) 2168-2173.
[164] K.-i. Morigaki, A. Ohta, Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy, Journal of Power Sources, 76 (1998) 159-166.
[165] J.-H. Cheng, A.A. Assegie, C.-J. Huang, M.-H. Lin, A.M. Tripathi, C.-C. Wang, M.-T. Tang, Y.-F. Song, W.-N. Su, B.J. Hwang, Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy, The Journal of Physical Chemistry C, 121 (2017) 7761-7766.
[166] K. Zhuo, M.G. Jeong, C.H. Chung, Highly porous dendritic Ni-Sn anodes for lithium-ion batteries, Journal of Power Sources, 244 (2013) 601-605.
[167] J.K. Stark, Y. Ding, P.A. Kohl, Nucleation of Electrodeposited Lithium Metal: Dendritic Growth and the Effect of Co-Deposited Sodium, Journal of the Electrochemical Society, 160 (2013) D337-D342.
[168] J.K. Stark, Y. Ding, P.A. Kohl, Dendrite-Free Electrodeposition and Reoxidation of Lithium-Sodium Alloy for Metal-Anode Battery, Journal of The Electrochemical Society, 158 (2011) A1100-A1105.
[169] Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu, C. Liu, Y. Lu, H. Wang, K. Yan, X. Tao, Y. Cui, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating, Proc Natl Acad Sci U S A, 113 (2016) 2862-2867.
[170] J. Song, H. Lee, M.J. Choo, J.K. Park, H.T. Kim, Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes, Sci Rep, 5 (2015) 14458.
[171] J. Guo, Z.Y. Wen, M.F. Wu, J. Jin, Y. Liu, Vinylene carbonate-LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode, Electrochemistry Communications, 51 (2015) 59-63.
[172] N. Ding, L. Zhou, C. Zhou, D. Geng, J. Yang, S.W. Chien, Z. Liu, M.F. Ng, A. Yu, T.S. Hor, M.B. Sullivan, Y. Zong, Building better lithium-sulfur batteries: from LiNO3 to solid oxide catalyst, Sci Rep, 6 (2016) 33154-33163.
[173] Y.H. Zhang, J.F. Qian, W. Xu, S.M. Russell, X.L. Chen, E. Nasybulin, P. Bhattacharya, M.H. Engelhard, D.H. Mei, R.G. Cao, F. Ding, A.V. Cresce, K. Xu, J.G. Zhang, Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure, Nano Lett., 14 (2014) 6889-6896.
[174] X.M. Hao, J. Zhu, X. Jiang, H.T. Wu, J.S. Qiao, W. Sun, Z.H. Wang, K.N. Sun, Ultrastrong Polyoxyzole Nanofiber Membranes for Dendrite-Proof and Heat-Resistant Battery Separators, Nano Lett., 16 (2016) 2981-2987.
[175] Y. Tang, J. Deng, W. Li, O.I. Malyi, Y. Zhang, X. Zhou, S. Pan, J. Wei, Y. Cai, Z. Chen, X. Chen, Water-Soluble Sericin Protein Enabling Stable Solid-Electrolyte Interphase for Fast Charging High Voltage Battery Electrode, Adv Mater, 29 (2017) 1701828-1701837.
[176] Z. Liang, G.Y. Zheng, C. Liu, N. Liu, W.Y. Li, K. Yan, H.B. Yao, P.C. Hsu, S. Chu, Y. Cui, Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes, Nano Lett., 15 (2015) 2910-2916.
[177] X.B. Cheng, T.Z. Hou, R. Zhang, H.J. Peng, C.Z. Zhao, J.Q. Huang, Q. Zhang, Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries, Adv. Mater., 28 (2016) 2888-2895.
[178] J.S. Kim, D.W. Kim, H.T. Jung, J.W. Choi, Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive, Chem. Mat., 27 (2015) 2780-2787.
[179] L.L. Lu, J. Ge, J.N. Yang, S.M. Chen, H.B. Yao, F. Zhou, S.H. Yu, Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance, Nano Lett, 16 (2016) 4431-4437.
[180] C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat Commun, 6 (2015) 8058-8066.
[181] Y.Y. Liu, D.C. Lin, Z. Liang, J. Zhao, K. Yan, Y. Cui, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nat. Commun., 7 (2016) 9.
[182] Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Rational material design for ultrafast rechargeable lithium-ion batteries, Chem Soc Rev, 44 (2015) 5926-5940.
[183] X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang, Q. Zhang, A Review of Solid Electrolyte Interphases on Lithium Metal Anode, Adv. Sci., 3 (2016) 20.
[184] D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics, 148 (2002) 405-416.
[185] X.X. Zeng, Y.X. Yin, N.W. Li, W.C. Du, Y.G. Guo, L.J. Wan, Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries, J Am Chem Soc, 138 (2016) 15825-15828.
[186] C.W. Lin, C.L. Hung, M. Venkateswarlu, B.J. Hwang, Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries, Journal of Power Sources, 146 (2005) 397-401.
[187] D. Lin, W. Liu, Y. Liu, H.R. Lee, P.C. Hsu, K. Liu, Y. Cui, High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide), Nano Lett, 16 (2016) 459-465.
[188] R. Khurana, J.L. Schaefer, L.A. Archer, G.W. Coates, Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries, J. Am. Chem. Soc., 136 (2014) 7395-7402.
[189] K.J. Harry, X.X. Liao, D.Y. Parkinson, A.M. Minor, N.P. Balsara, Electrochemical Deposition and Stripping Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane, Journal of the Electrochemical Society, 162 (2015) A2699-A2706.
[190] J.S. Zhang, Y. Bai, X.G. Sun, Y.C. Li, B.K. Guo, J.H. Chen, G.M. Veith, D.K. Hensley, M.P. Paranthaman, J.B. Goodenough, S. Dai, Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures, Nano Lett., 15 (2015) 3398-3402.
[191] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3 (2015) 19218-19253.
[192] B.D. Adams, J. Zheng, X. Ren, W. Xu, J.-G. Zhang, Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries, Advanced Energy Materials, 7 (2017) 1702097-1702107.
[193] C.M. López, J.T. Vaughey, D.W. Dees, Morphological Transitions on Lithium Metal Anodes, Journal of The Electrochemical Society, 156 (2009) A726-A729.
[194] A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat Mater, 4 (2005) 366-377.
[195] D. Zhou, R.L. Liu, Y.B. He, F.Y. Li, M. Liu, B.H. Li, Q.H. Yang, Q. Cai, F.Y. Kang, SiO2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life, Advanced Energy Materials, 6 (2016) 1502214-1502223.
[196] H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, Y. Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nat Commun, 4 (2013) 1943-1948.
[197] D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources, 89 (2000) 206-218.
[198] S. Xiong, K. Xie, Y. Diao, X. Hong, Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries, Electrochim. Acta, 83 (2012) 78-86.
[199] J. Song, B. Sun, H. Liu, Z. Ma, Z. Chen, G. Shao, G. Wang, Enhancement of the Rate Capability of LiFePO4 by a New Highly Graphitic Carbon-Coating Method, ACS Appl Mater Interfaces, 8 (2016) 15225-15231.
[200] J. Ming, M. Li, P. Kumar, A.-Y. Lu, W. Wahyudi, L.-J. Li, Redox Species-Based Electrolytes for Advanced Rechargeable Lithium Ion Batteries, ACS Energy Letters, 1 (2016) 529-534.
[201] J.B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, Journal of the American Chemical Society, 135 (2013) 1167-1176.
[202] N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 51 (2012) 9994-10024.
[203] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage, Nature Materials, 11 (2011) 19-29.
[204] Y. Guo, H. Li, T. Zhai, Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries, Adv Mater, 29 (2017) 1700007.
[205] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat Nanotechnol, 12 (2017) 194-206.
[206] X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin, H. Zhang, X. Wu, Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte, Journal of Power Sources, 196 (2011) 9839-9843.
[207] X.-B. Cheng, C. Yan, H.-J. Peng, J.-Q. Huang, S.-T. Yang, Q. Zhang, Sulfurized solid electrolyte interphases with a rapid Li + diffusion on dendrite-free Li metal anodes, Energy Storage Materials, (2017) 199-205.
[208] D. Devaux, K.J. Harry, D.Y. Parkinson, R. Yuan, D.T. Hallinan, A.A. MacDowell, N.P. Balsara, Failure Mode of Lithium Metal Batteries with a Block Copolymer Electrolyte Analyzed by X-Ray Microtomography, Journal of the Electrochemical Society, 162 (2015) A1301-A1309.
[209] H. Wu, Y. Cao, L. Geng, C. Wang, In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes, Chem. Mat., 29 (2017) 3572-3579.
[210] D. Lin, J. Zhao, J. Sun, H. Yao, Y. Liu, K. Yan, Y. Cui, Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix, Proc Natl Acad Sci U S A, 114 (2017) 4613-4618.
[211] S. Liu, X. Xia, Y. Zhong, S. Deng, Z. Yao, L. Zhang, X.-B. Cheng, X. Wang, Q. Zhang, J. Tu, 3D TiC/C Core/Shell Nanowire Skeleton for Dendrite-Free and Long-Life Lithium Metal Anode, Advanced Energy Materials, (2017) 1702322.
[212] Y. Xu, A.S. Menon, P.P.R.M.L. Harks, D.C. Hermes, L.A. Haverkate, S. Unnikrishnan, F.M. Mulder, Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes, Energy Storage Materials, 12 (2018) 69-78.
[213] K. Yan, H.W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu, Y. Cui, Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode, Nano Lett, 14 (2014) 6016-6022.
[214] M.-H. Ryou, Y.M. Lee, Y. Lee, M. Winter, P. Bieker, Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating, Advanced Functional Materials, 25 (2015) 834-841.
[215] Y. Li, W. Zhou, S. Xin, S. Li, J. Zhu, X. Lu, Z. Cui, Q. Jia, J. Zhou, Y. Zhao, J.B. Goodenough, Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries, Angew Chem Int Ed Engl, 55 (2016) 9965-9968.
[216] Y. Li, C.-A. Wang, H. Xie, J. Cheng, J.B. Goodenough, High lithium ion conduction in garnet-type Li6La3ZrTaO12, Electrochemistry Communications, 13 (2011) 1289-1292.
[217] D. Lin, Y. Liu, A. Pei, Y. Cui, Nanoscale perspective: Materials designs and understandings in lithium metal anodes, Nano Research, 10 (2017) 4003-4026.
[218] J. Janek, W.G. Zeier, A solid future for battery development, Nature Energy, 1 (2016) 16141.
[219] S.-H. Lee, C.E. Tracy, P. Liu, BURIED ANODE LITHIUM THIN FILM, U.S. Patent 6, 805,999, (2004).
[220] S.-H. Lee, C.E. Tracy, P. Liu, THIN FILM BURIED ANODE BATTERY, U.S, Patent 7,632,602, (2009).
[221] H. Wang, C. Wang, E. Matios, W. Li, Critical Role of Ultrathin Graphene Films with Tunable Thickness in Enabling Highly Stable Sodium Metal Anodes, Nano Lett, 17 (2017) 6808-6815.
[222] Y. Chen, X.L. Gong, J.G. Gai, Progress and Challenges in Transfer of Large-Area Graphene Films, Adv Sci (Weinh), 3 (2016) 1500343.
[223] J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable Atomic Membranes from Graphene Sheets, Nano Lett., 8 (2008) 2458-2462.
[224] Y. Zhang, L. Zhang, C. Zhou, Review of Chemical Vapor Deposition of Graphene and Related Applications, Accounts of Chemical Research, 46 (2013) 2329-2339.
[225] C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, M. Sindoro, H. Zhang, Recent Advances in Ultrathin Two-Dimensional Nanomaterials, Chem Rev, 117 (2017) 6225-6331.
[226] F. Yao, F. Güneş, H.Q. Ta, S.M. Lee, S.J. Chae, K.Y. Sheem, C.S. Cojocaru, S.S. Xie, Y.H. Lee, Diffusion Mechanism of Lithium Ion through Basal Plane of Layered Graphene, Journal of the American Chemical Society, 134 (2012) 8646-8654.
[227] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321 (2008) 385-388.
[228] G. Rajasekaran, P. Narayanan, A. Parashar, Effect of Point and Line Defects on Mechanical and Thermal Properties of Graphene: A Review, Critical Reviews in Solid State and Materials Sciences, 41 (2015) 47-71.
[229] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320 (2008) 1308.
[230] K. Kim, V.I. Artyukhov, W. Regan, Y. Liu, M.F. Crommie, B.I. Yakobson, A. Zettl, Ripping Graphene: Preferred Directions, Nano Letters, 12 (2012) 293-297.
[231] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene, Nano Letters, 7 (2007) 238-242.
[232] A. Niilisk, J. Kozlova, H. Alles, J. Aarik, V. Sammelselg, Raman characterization of stacking in multi-layer graphene grown on Ni, Carbon, 98 (2016) 658-665.
[233] H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park, H.-J. Sohn, Metallic anodes for next generation secondary batteries, Chemical Society Reviews, 42 (2013) 9011-9034.
[234] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 9 (2016) 1955-1988.
[235] L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4 (2013) 1481.
[236] Z. Tu, S. Choudhury, M.J. Zachman, S. Wei, K. Zhang, L.F. Kourkoutis, L.A. Archer, Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries, Joule, 1 (2017) 394-406.
[237] G. Li, Y. Gao, X. He, Q. Huang, S. Chen, S.H. Kim, D. Wang, Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries, Nat. Commun., 8 (2017) 850.
[238] Y. Gu, W.W. Wang, Y.J. Li, Q.H. Wu, S. Tang, J.W. Yan, M.S. Zheng, D.Y. Wu, C.H. Fan, W.Q. Hu, Z.B. Chen, Y. Fang, Q.H. Zhang, Q.F. Dong, B.W. Mao, Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes, Nat Commun, 9 (2018) 1339.
[239] D. Aurbach, <Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries>, Journal of Power Sources, 89 (2000) 206-218.
[240] M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour, H.H. Chang, D.P. Fenning, S.F. Lux, O. Paschos, C. Bauer, F. Maglia, S. Lupart, P. Lamp, Y. Shao-Horn, Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights, J Phys Chem Lett, 6 (2015) 4653-4672.
[241] A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, npj Computational Materials, 4 (2018).
[242] B.D. Adams, E.V. Carino, J.G. Connell, K.S. Han, R. Cao, J. Chen, J. Zheng, Q. Li, K.T. Mueller, W.A. Henderson, J.-G. Zhang, Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes, Nano Energy, 40 (2017) 607-617.
[243] L. Zhang, M. Ling, J. Feng, L. Mai, G. Liu, J. Guo, The synergetic interaction between LiNO 3 and lithium polysulfides for suppressing shuttle effect of lithium-sulfur batteries, Energy Storage Materials, 11 (2018) 24-29.
[244] V. Etacheri, U. Geiger, Y. Gofer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Exceptional electrochemical performance of Si-nanowires in 1, 3-dioxolane solutions: a surface chemical investigation, Langmuir, 28 (2012) 6175-6184.

QR CODE