簡易檢索 / 詳目顯示

研究生: 侯明輔
MING-FU HOU
論文名稱: 利用微波輔助合成甲基丙烯酸明膠及結合幹細胞外泌體製備導電水凝膠於心肌組織工程之應用
Microwave-assisted Synthesis of Gelatin Methacrylate and its Combination of Stem Cell-Derived Exosomes to Prepare Conductive Hydrogels for Cardiac Tissue Engineering Applications
指導教授: 蕭育生
Yu-Sheng Hsiao
口試委員: 游佳欣
Jia-Shing Yu
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 99
中文關鍵詞: 導電生物水凝膠聚二氧乙基噻吩:聚苯乙烯磺酸甲基丙烯酸酐化明膠胞外泌體心肌修復水凝膠貼片
外文關鍵詞: Conductive bio-hydrogel, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, Gelatin methacrylate, exosomes, myocardial repair hydrogel patch
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文內容為開發微波輔助合成反應,探討以快速及高效方式合成甲基丙烯酸明膠 (gelatin methacrylate, GelMA) ,並結合幹細胞外泌體 (exosomes) 於製備聚二氧乙基噻吩:聚苯乙烯磺酸〔poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, PEDOT:PSS〕 系之可光聚合固化導電水凝膠,隨後探討其於心肌組織工程之應用。
關於GelMA合成方面,研究導入核磁共振及三硝基苯磺酸之比色法分析修飾率可達91%。隨後,以GelMA為光聚合水凝膠的主體,摻入聚二氧乙基噻吩:聚苯乙烯磺酸(poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, PEDOT:PSS),導電高分子能提升水凝膠導電度,利於心肌組織周圍之電訊號傳遞,再加入光起始劑苯基-2,4,6-三甲基苯甲酰亞膦酸鋰 (lithium phenyl-2,4,6-trimethylbenzoylphosphinate, LAP) 將水凝膠以紫外光交聯聚合,並且提升機械性質使材料符合在心臟的楊氏模數範圍內。材料分析方面,我們導入黏度、光固化程度、機械性質及離子導電度等材料特性的綜合評估,以尋找出最佳化的混摻比例。以大鼠心肌母細胞H9c2做為評估模型進行細胞死/活染色、細胞活性測試及溶血率實驗證實材料的生物相容性,並將永生化骨髓幹細胞 (IBMSC) 之胞外泌體 (exosomes) 進行尺寸管柱層析法 (size exclusion chromatography, SEC) 純化, IBMSC的exosomes有助於刺激新生血管形成,並可抑制炎症反應,從而改善缺血性損傷後的心臟組織,期許因心肌梗塞 (myocardial infarction, MI) 造成的部分組織壞死能在此導電水凝膠添加exosomes的建立下提供修復心肌組織的新穎辦法,利用於治療心臟缺血性損傷並改善心肌纖維化的影響。


This research develops a microwave-assisted synthesis reaction to investigate the rapid and efficient synthesis of gelatin methacrylate (GelMA) in combination with stem cell exosomes for the preparation of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based photopolymerizable conductive Hydrogels for myocardial tissue engineering, and then explores its application in myocardial tissue engineering.
Regarding the synthesis of GelMA, the study introduced NMR and colorimetric analysis of trinitrobenzene sulfonic acid, which showed a modification rate of 91%. Subsequently, GelMA was used as the main component of the photopolymerized hydrogel, and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was added, which is an electrically conductive polymer that can enhance the electrical conductivity of the hydrogel and improve the transmission of electrical signals around myocardial tissues. In addition, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) was added as a photo initiator to crosslink the hydrogel with ultraviolet light and enhance the mechanical properties so that the material could fit into the Young's modulus range of the heart. For the material analysis, we introduced a comprehensive evaluation of the material properties, such as viscosity, light-curing degree, mechanical properties, and ionic conductivity, in order to find the optimal mixing ratio. Rat cardiomyoblast H9c2 was used as the evaluation model to confirm the biocompatibility of the materials by Live/Dead assay, cell viability test, and hemolysis test, and the exosomes of immortalized bone marrow stem cells (IBMSC) were purified by size exclusion chromatography (SEC). The exosomes of IBMSC help to stimulate neovascularization and inhibit inflammation to improve cardiac tissues after ischemic injury, and it is expected that partial tissue necrosis due to myocardial infarction (MI) can be repaired with the addition of exosomes to this conductive hydrogel, providing a novel approach to repairing cardiac tissues by utilizing the exosomes in the treatment of cardiac ischemic injury. It can be utilized for the treatment of ischemic heart injury and to ameliorate the effects of myocardial fibrosis.

中文摘要 1 英文摘要 2 謝誌 4 目錄 5 圖目錄 9 第一章 緒論 12 1.1 研究動機與目的 12 1.2 導電水凝膠 14 1.3 胞外泌體 15 第二章 原理與文獻回顧 18 2.1 冠脈循環疾病 18 2.1.1 缺血性心臟病 (CVID) 治療方式 19 2.1.2 心肌治療貼片 20 2.2 GelMA水凝膠 23 2.2.1 GelMA合成 23 2.2.2 微波輔助合成 24 2.3 導電高分子 25 2.3.1 傳導機理 25 2.3.2 PEDOT:PSS 27 2-4 導電水凝膠 28 2.4.1 導電高分子摻雜方法 28 2.4.2 光聚合特性 30 2.5 胞外泌體 31 2.5.1 胞外泌體提取及純化方法 31 2.5.2 胞外泌體鑑定方法及保存 33 2.5.3 胞外泌體應用於組織修復 34 第三章 設計與實驗方法 36 3.1 實驗藥品 36 3.2 實驗儀器 38 3.3 實驗流程 40 3.4 細胞培養 42 3.4.1 細胞培養用詞介紹 42 3.4.2 細胞解凍 42 3.4.3 細胞更換培養液 43 3.4.4 細胞計數並繼代及冷凍 43 3.5 胞外泌體 45 3.5.1 胞外泌體製備 45 3.5.2 胞外泌體提取純化 45 3.5.3 BCA蛋白質濃度測定 47 3.5.4 胞外泌體SEM試片製備 47 3.5.5 胞外泌體TEM試片製備 49 3.6 實驗方法 50 3.6.1 GelMA合成方法 50 3.6.2 GelMA/PEDOT:PSS導電水凝膠製程 51 3.6.3 導電水凝膠SEM試片製備 51 3.6.4 電化學EIS元件製程 52 3.7 分析方法 53 3.7.1 Gelatin、GelMA 1H NMR鑑定結構及修飾率 53 3.7.2 Gelatin、GelMA TNBS assay 鑑定修飾率 53 3.7.3 應力-應變測試 (機型:TA. XT plusC) 54 3.7.4 溶脹比測試 54 3.7.5 界達電位測試 54 3.7.6 導電度及接觸電阻量測 55 3.7.7 導電水凝膠之Live/Dead assay測試 56 3.7.8 導電水凝膠之Alamar blue assay測試 57 3.7.9 導電水凝膠溶血測試 58 3.7.10 細胞胞吞胞外泌體測試 59 3.7.11 細胞劃痕(scratch assay)測試 59 3.7.12 胞外泌體胞埋於水凝膠測試 60 第四章 結果與討論 61 4.1 GelMA合成分析 61 4.1.1 Gelatin、GelMA 1H NMR 圖譜鑑定結構及修飾率計算 61 4.1.2 Gelatin、GelMA TNBS assay 修飾率計算 65 4.2 導電水凝材料分析 66 4.2.1 實驗比例濃度選擇 66 4.2.2 黏度性質 68 4.2.3 應力-應變性質 70 4.2.4 溶脹比測試 71 4.2.5 界達電位量測 72 4.2.5 水凝膠電性量測 73 4.2.6 水凝膠微結構分析 76 4.2.7 細胞貼附情形及Live/Dead assay測試 78 4.2.8 細胞Alamar blue assay活性測試 80 4.2.9 溶血測試 81 4.3 Exosomes純化結果分析 82 4.3.1 NTA鑑定及定量 82 4.3.2 BCA蛋白質濃度測定 83 4.3.3 胞外泌體形態學分析 84 4.4 Exosomes之應用 86 4.4.1 細胞胞吞exosomes試驗 86 4.4.2 細胞劃痕 (scratch assay) 試驗 87 4.4.3 水凝膠胞埋exosomes 89 第五章 結論 90 參考文獻 91

1. Gaziano, T., et al., Cardiovascular disease. Disease Control Priorities in Developing Countries. 2nd edition, 2006.
2. Moghaddam, A.S., et al., Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis, 2019. 285: p. 1-9.
3. Doenst, T., et al., PCI and CABG for treating stable coronary artery disease: JACC review topic of the week. Journal of the American College of Cardiology, 2019. 73(8): p. 964-976.
4. Baglio, S.R., D.M. Pegtel, and N. Baldini, Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Frontiers in physiology, 2012. 3: p. 359.
5. Ul Haq, A., et al., Intrinsically conductive polymers for striated cardiac muscle repair. International Journal of Molecular Sciences, 2021. 22(16): p. 8550.
6. Sanders, S.L., et al., Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell, 1992. 69(2): p. 353-365.
7. Rothman, J.E., Mechanisms of intracellular protein transport. Nature, 1994. 372(6501): p. 55-63.
8. Südhof, T.C., The synaptic vesicle cycle: a cascade of protein–protein interactions. Nature, 1995. 375(6533): p. 645-653.
9. Kazemi, N.Y., et al., The role and clinical interest of extracellular vesicles in pregnancy and ovarian cancer. Biomedicines, 2021. 9(9): p. 1257.
10. Hofmann, L., et al., The emerging role of exosomes in diagnosis, prognosis, and therapy in head and neck cancer. International journal of molecular sciences, 2020. 21(11): p. 4072.
11. Whitaker, R.H., Anatomy of the heart. Medicine, 2010. 38(7): p. 333-335.
12. Tariq, U., et al., Role of biomaterials in cardiac repair and regeneration: therapeutic intervention for myocardial infarction. ACS Biomaterials Science & Engineering, 2022. 8(8): p. 3271-3298.
13. Nguyen, P.D., D.E. de Bakker, and J. Bakkers, Cardiac regenerative capacity: an evolutionary afterthought? Cellular and molecular life sciences, 2021. 78(12): p. 5107-5122.
14. Yin, X., et al., Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Frontiers in pharmacology, 2023. 14: p. 1070973.
15. Bergmann, O., et al., Evidence for cardiomyocyte renewal in humans. Science, 2009. 324(5923): p. 98-102.
16. Bangalore, S., et al., Renin angiotensin system inhibitors for patients with stable coronary artery disease without heart failure: systematic review and meta-analysis of randomized trials. bmj, 2017. 356.
17. Li, P., et al., The Role of Hydrogel in Cardiac Repair and Regeneration for Myocardial Infarction: Recent Advances and Future Perspectives. Bioengineering, 2023. 10(2): p. 165.
18. Gabriel, C., A. Peyman, and E.H. Grant, Electrical conductivity of tissue at frequencies below 1 MHz. Physics in medicine & biology, 2009. 54(16): p. 4863.
19. Tsai, J.-Z., et al., In-vivo measurement of swine myocardial resistivity. IEEE Transactions on Biomedical Engineering, 2002. 49(5): p. 472-483.
20. Roberts, D.E. and A.M. Scher, Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circulation Research, 1982. 50(3): p. 342-351.
21. Solazzo, M., et al., The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL bioengineering, 2019. 3(4).
22. Wang, L., et al., Injectable and conductive cardiac patches repair infarcted myocardium in rats and minipigs. Nature Biomedical Engineering, 2021. 5(10): p. 1157-1173.
23. Liang, S., et al., Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches. Advanced Materials, 2018. 30(23): p. 1704235.
24. Mihic, A., et al., A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation, 2015. 132(8): p. 772-784.
25. Zhou, J., et al., Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Theranostics, 2018. 8(12): p. 3317.
26. Liu, Y., et al., One zwitterionic injectable hydrogel with ion conductivity enables efficient restoration of cardiac function after myocardial infarction. Chemical Engineering Journal, 2021. 418: p. 129352.
27. Wang, W., et al., An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials, 2018. 160: p. 69-81.
28. Liang, W., et al., Conductive hydrogen sulfide-releasing hydrogel encapsulating ADSCs for myocardial infarction treatment. ACS applied materials & interfaces, 2019. 11(16): p. 14619-14629.
29. Wang, L., et al., Mussel‐inspired conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive nanoparticles. Advanced Functional Materials, 2016. 26(24): p. 4293-4305.
30. Sun, L., et al., Induced cardiomyocytes-integrated conductive microneedle patch for treating myocardial infarction. Chemical Engineering Journal, 2021. 414: p. 128723.
31. Song, X., et al., A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair. Biomaterials, 2021. 273: p. 120811.
32. Yin, J., et al., 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS applied materials & interfaces, 2018. 10(8): p. 6849-6857.
33. Lai, T., J. Yu, and W. Tsai, Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release. Journal of Materials Chemistry B, 2016. 4(13): p. 2304-2313.
34. Baydin, T., et al., Long-term storage stability of type A and type B gelatin gels: The effect of Bloom strength and co-solutes. Food Hydrocolloids, 2022. 127: p. 107535.
35. Shirahama, H., et al., Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Scientific reports, 2016. 6(1): p. 31036.
36. Baghban, S.A., et al., A highly efficient microwave-assisted synthesis of an LED-curable methacrylated gelatin for bio applications. RSC advances, 2021. 11(25): p. 14996-15009.
37. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-271.
38. Gabano, E. and M. Ravera, Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This “Green” Method? Molecules, 2022. 27(13): p. 4249.
39. Shirakawa, H., et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications, 1977(16): p. 578-580.
40. Bredas, J.L. and G.B. Street, Polarons, bipolarons, and solitons in conducting polymers. Accounts of chemical research, 1985. 18(10): p. 309-315.
41. Tseghai, G.B., et al., PEDOT: PSS-based conductive textiles and their applications. Sensors, 2020. 20(7): p. 1881.
42. Nezakati, T., et al., Conductive polymers: opportunities and challenges in biomedical applications. Chemical reviews, 2018. 118(14): p. 6766-6843.
43. Qi, G., L. Huang, and H. Wang, Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization. Chemical Communications, 2012. 48(66): p. 8246-8248.
44. Rahy, A. and D.J. Yang, Synthesis of highly conductive polyaniline nanofibers. Materials Letters, 2008. 62(28): p. 4311-4314.
45. Chiang, C.K., et al., Electrical conductivity in doped polyacetylene. Physical review letters, 1977. 39(17): p. 1098.
46. Worfolk, B.J., et al., Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proceedings of the National Academy of Sciences, 2015. 112(46): p. 14138-14143.
47. Lu, B., et al., Pure pedot: Pss hydrogels. Nature communications, 2019. 10(1): p. 1043.
48. Donahue, M.J., et al., Tailoring PEDOT properties for applications in bioelectronics. Materials Science and Engineering: R: Reports, 2020. 140: p. 100546.
49. Gao, N., et al., Application of PEDOT: PSS and its composites in electrochemical and electronic chemosensors. Chemosensors, 2021. 9(4): p. 79.
50. Lieberth, K., et al., Current‐Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity. Advanced Healthcare Materials, 2021. 10(19): p. 2100845.
51. Spencer, A.R., et al., Electroconductive gelatin methacryloyl-PEDOT: PSS composite hydrogels: Design, synthesis, and properties. ACS biomaterials science & engineering, 2018. 4(5): p. 1558-1567.
52. Fan, L., et al., Exosomes‐Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. Advanced Science, 2022. 9(13): p. 2105586.
53. Thaning, E.M., et al., Stability of poly (3, 4‐ethylene dioxythiophene) materials intended for implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010. 93(2): p. 407-415.
54. Shahini, A., et al., 3D conductive nanocomposite scaffold for bone tissue engineering. International journal of nanomedicine, 2014: p. 167-181.
55. Mengistie, D.A., et al., Enhanced thermoelectric performance of PEDOT: PSS flexible bulky papers by treatment with secondary dopants. ACS applied materials & interfaces, 2015. 7(1): p. 94-100.
56. Song, I., et al., Conductive channel formation for enhanced electrical conductivity of PEDOT: PSS with high work-function. Applied Surface Science, 2020. 529: p. 147176.
57. Holman, K.T., et al., Metric engineering of soft molecular host frameworks. Accounts of Chemical Research, 2001. 34(2): p. 107-118.
58. Burke, N.J., et al., Incorporation of sulfonate dyes into hydrogen-bonded networks. 2004.
59. Holmes, R., et al., Thiol-ene photo-click collagen-PEG hydrogels: impact of water-soluble photoinitiators on cell viability, gelation kinetics and rheological properties. Polymers, 2017. 9(6): p. 226.
60. Fairbanks, B.D., et al., Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials, 2009. 30(35): p. 6702-6707.
61. Lobb, R.J., et al., Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of extracellular vesicles, 2015. 4(1): p. 27031.
62. Kamerkar, S., et al., Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017. 546(7659): p. 498-503.
63. Ding, L., et al., A holistic review of the state‐of‐the‐art microfluidics for exosome separation: an overview of the current status, existing obstacles, and future outlook. Small, 2021. 17(29): p. 2007174.
64. Lozano-Ramos, I., et al., Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples. Journal of extracellular vesicles, 2015. 4(1): p. 27369.
65. Takov, K., D.M. Yellon, and S.M. Davidson, Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and functional potential. Journal of extracellular vesicles, 2019. 8(1): p. 1560809.
66. Patel, G.K., et al., Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific reports, 2019. 9(1): p. 5335.
67. Tian, Y., et al., Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. Journal of extracellular vesicles, 2020. 9(1): p. 1697028.
68. Hsiao, Y.-S., et al., Microfluidic device using metallic nanostructure arrays for the isolation, detection, and purification of exosomes. Journal of Alloys and Compounds, 2023. 947: p. 169658.
69. Wu, Y., W. Deng, and D.J. Klinke II, Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst, 2015. 140(19): p. 6631-6642.
70. Maas, S.L., et al., Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. Journal of Controlled Release, 2015. 200: p. 87-96.
71. Dong, M., et al., Fbs-derived exosomes as a natural nano-scale carrier for icariin promote osteoblast proliferation. Frontiers in Bioengineering and Biotechnology, 2021. 9: p. 615920.
72. Jeyaram, A. and S.M. Jay, Preservation and storage stability of extracellular vesicles for therapeutic applications. The AAPS journal, 2018. 20: p. 1-7.
73. McGann, L.E., Differing actions of penetrating and nonpenetrating cryoprotective agents. Cryobiology, 1978. 15(4): p. 382-390.
74. Bahr, M.M., et al., Preservation techniques of stem cells extracellular vesicles: A gate for manufacturing of clinical grade therapeutic extracellular vesicles and long-term clinical trials. International journal of veterinary science and medicine, 2020. 8(1): p. 1-8.
75. Bhattacharya, S., Cryoprotectants and their usage in cryopreservation process. Cryopreservation Biotechnology in biomedical and biological sciences, 2018: p. 7-19.
76. Bhattacharya, M.S., A review on cryoprotectant and its modern implication in cryonics. Asian Journal of Pharmaceutics (AJP), 2016. 10(3).
77. Lai, C.P.-K. and X.O. Breakefield, Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Frontiers in physiology, 2012. 3: p. 228.
78. Bruno, S., et al., Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology: JASN, 2009. 20(5): p. 1053.
79. El-Tookhy, O.S., et al., Histological evaluation of experimentally induced critical size defect skin wounds using exosomal solution of mesenchymal stem cells derived microvesicles. International journal of stem cells, 2017. 10(2): p. 144-153.
80. Perin, E.C., et al., A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). American heart journal, 2011. 161(6): p. 1078-1087. e3.
81. Mathiasen, A.B., et al., Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina—final 3-year follow-up. International journal of cardiology, 2013. 170(2): p. 246-251.
82. Qian, L., et al., miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. Journal of Experimental Medicine, 2011. 208(3): p. 549-560.
83. Feng, Y., et al., Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PloS one, 2014. 9(2): p. e88685.
84. Hullinger, T.G., et al., Inhibition of miR-15 protects against cardiac ischemic injury. Circulation research, 2012. 110(1): p. 71-81.
85. Shao, L., et al., MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. BioMed research international, 2017. 2017.
86. Atwood, J.L., Comprehensive supramolecular chemistry II. 2017: Elsevier.
87. Warren, H., et al., Electrical conductivity, impedance, and percolation behavior of carbon nanofiber and carbon nanotube containing gellan gum hydrogels. Journal of Polymer Science Part B: Polymer Physics, 2014. 52(13): p. 864-871.
88. Meinert, C., et al., A method for prostate and breast cancer cell spheroid cultures using gelatin methacryloyl-based hydrogels. Prostate Cancer: Methods and Protocols, 2018: p. 175-194.
89. Spencer, A.R., et al., Bioprinting of a cell-laden conductive hydrogel composite. ACS applied materials & interfaces, 2019. 11(34): p. 30518-30533.
90. Nguyen, V.B., Creating a Multi-Functional Liquid Assay Utilizing alamarBlue REDOX Indicator. 2012.
91. Grada, A., et al., Research techniques made simple: analysis of collective cell migration using the wound healing assay. Journal of Investigative Dermatology, 2017. 137(2): p. e11-e16.
92. Emig, R., et al., Passive myocardial mechanical properties: meaning, measurement, models. Biophysical Reviews, 2021: p. 1-24.
93. Huyer, L.D., et al., Biomaterial based cardiac tissue engineering and its applications. Biomedical materials, 2015. 10(3): p. 034004.
94. Mochizuki, Y., T. Horii, and H. Okuzaki, Effect of pH on structure and conductivity of PEDOT/PSS. Transactions of the Materials Research Society of Japan, 2012. 37(2): p. 307-310.
95. Shi, H., et al., Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Advanced Electronic Materials, 2015. 1(4): p. 1500017.
96. Gray, W.D., A.J. Mitchell, and C.D. Searles, An accurate, precise method for general labeling of extracellular vesicles. MethodsX, 2015. 2: p. 360-367.

無法下載圖示 全文公開日期 2033/08/28 (校內網路)
全文公開日期 2038/08/28 (校外網路)
全文公開日期 2038/08/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE