簡易檢索 / 詳目顯示

研究生: 凃成翰
Cheng-Han Tu
論文名稱: 應用離子交換樹脂提濃程序增進電解處理水中氨氮效能之研究
Enhancement of Removal Efficiency of Ammonia in Wastewater for Electrolysis system via Enriching Process with Ion Exchange Resin
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
李豪業
Hao-Yeh Lee
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 95
中文關鍵詞: 氨氮電解離子交換
外文關鍵詞: ammonia, electrolysis, ion exchange, hybrid system
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著工業發展而產生更多氨氮廢棄物,因此,政府針對氨氮排放量管制標準也逐漸提高,相關產業需要更有效率的氨氮處理程序。本研究主要是以電解法去除廢水中氨氮的方式,並應用離子交換樹脂提濃廢水中氨氮之程序,增加電解法處理效能,同時解決氯胺排放的問題。分析各操作參數,包含電解質種類、電解質濃度、水體流率、電流密度、反應pH區間以及氨氮初始濃度來探討氨氮去除速率的影響;另外,配製低濃度之氨氮廢水與含鈣氨氮廢水模擬實際情況,評估離子交換樹脂結合電解法去除氨氮之可行性。實驗中,測量氨氮濃度、殘留餘氯濃度來判斷不同條件下的氨氮去除速率,並針對電解產生之尾氣進行分析,以確認反應機制。
實驗結果顯示,電解質添加3 wt%NaCl、系統水體流率1 L/min、電流密度10 mA/cm2以及反應pH區間7-8時,為本系統最佳的操作參數,同時,在探討電解質種類對去除速率影響實驗時,搭配質譜儀與銨離子選擇性固態電極的分析結果,可推論電解法去除氨氮的反應途徑主要為間接氧化,且氨氮可經電解後轉變成無害之氮氣,其選擇率約43.2%。應用離子交換程序結合電解法處理水中氨氮的複合系統可以提高電解效能,同時也能將氯胺保留於再生劑中,減少有毒物質排放。Na型SSTPPC60樹脂吸附氨氮與電解再生的效果優於H型的SGC650H樹脂,其在氨氮濃度100 ppm、廢水流速為20 BV時的離子交換容量約為1.3 meq/mL,可穩定的吸附氨氮,未來可依此概念設置試驗級的系統進行實場測試,達到商業化之目的。


Ammonia-nitrogen wastes were increased with the development of industry, resulting in the government sets stricter relative standards. The industries need more efficient procedures for ammonia-nitrogen treatment. This study majorly focused on removal of ammonia via electrolysis process, where its efficiency was further improved by increasing the ammonia concentration with using ion exchange resins. The problem of chloramine emissions could be avoided via this process. Effects of operating parameters, such as kind of electrolyte, electrolyte concentration, liquid flow rate, current density, pH range, and initial ammonia nitrogen concentration on the removal rate of ammonia nitrogen were investigated, respectively. In addition, the feasibility of combination of ion exchange resin and electrolysis was evaluated by using simulated wastewater, which exhibited low-concentration ammonia and calcium cations. In the experiment, measurement of ammonia nitrogen concentration and residual chlorine concentration were applied to determine ammonia removal rate under various conditions. The exhausted gas produced from electrolysis was also analyzed to confirm the reaction mechanism.
A series of experiment indicated the optima operating conditions for this system were 3 wt% of NaCl, 1 L/min of liquid flow rate, 10mA/cm2 of current density, and pH 7-8. Meanwhile, in the study of effect of electrolytes, the analytic results of the mass spectrometer and the ammonium selective electrode showed the ammonia was removed through indirect oxidation and converted to harmless nitrogen gas with about 43.2% of selectivity. This hybrid system of ion exchange and electrolysis procedures not only enhances electrolysis efficiency but also reduces emission of toxic materials, resulting from retaining chloramine in the regenerant. Na-type SSTPPC60 resin was more effective than H-type SGC650H resin in terms of adsorbing ammonia. Under the condition of 100 ppm ammonia and 20 BV wastewater flow rate, Na-type SSTPPC60 resin achieved approximately 1.3 meq/mL of ion exchange capacity. In the future, a pilot can be set up for field test based on this concept to achieve the purpose of commercialization.

摘要 i ABSTRACT ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻回顧 6 2.1 氨氮介紹 6 2.2 工業中氨氮處理法 7 2.2.1 電化學氧化法 8 2.2.2 離子交換法 14 2.2.3 氣提法 16 2.2.4 薄膜分離法 19 2.2.5 生物法 21 2.2.6 化學沉澱法 24 2.2.7 折點加氯法 26 2.3 研究理念 28 第三章 研究方法 29 3.1 實驗規劃 29 3.2 實驗藥品 31 3.3 實驗設備 32 3.4 實驗流程 34 3.5 實驗分析方法 39 3.6 計算公式 41 第四章 結果與討論 42 4.1 電解系統操作參數對氨氮去除速率的影響 42 4.1.1 電解質對氨氮去除速率和能耗的影響 42 4.1.2 氯化鈉濃度對氨氮去除速率的影響 43 4.1.3 系統水體流率對氨氮去除速率的影響 46 4.1.4 電流密度對氨氮去除速率的影響 49 4.1.5 pH反應區間對氨氣去除速率的影響 51 4.1.6 初始氨氮濃度對氨氣去除速率的影響 55 4.1.7 尾氣檢測 58 4.2 離子交換樹脂系統去除廢水中氨氮 61 4.2.1 不同離子交換樹脂吸附純氨氮廢水結果比較 61 4.2.2 不同離子交換樹脂電解再生結果比較 64 4.2.3 B樹脂吸附含鈣氨氮廢水之可行性評估 69 4.2.4 B樹脂以鹽酸再生脫附鈣之可行性評估 71 第五章 結論 73 5.1 結論 73 5.1.1 電解系統去除氨氮 73 5.1.2 離子交換樹脂提濃氨氮程序 74 5.2 未來展望 75 參考文獻 78

[1] B. Clément and G. Merlin, "The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed," Science of The Total Environment, vol. 170, no. 1, pp. 71-79, 1995.
[2] C. Bernard, J. R. Colin, and L. D.-D. Anne, "Estimation of the hazard of landfills through toxicity testing of leachates: 2. Comparison of physico-chemical characteristics of landfill leachates with their toxicity determined with a battery of tests," Chemosphere, vol. 35, no. 11, pp. 2783-2796, 1997.
[3] J. P. Y. Jokela, R. H. Kettunen, K. M. Sormunen, and J. A. Rintala, "Biological nitrogen removal from municipal landfill leachate: low-cost nitrification in biofilters and laboratory scale in-situ denitrification," Water Research, vol. 36, no. 16, pp. 4079-4087, 2002.
[4] 張冠甫, 徐樹剛, 黃盟舜, 李茂松, and 張王冠, "氨氮廢水處理與回收技術及案例," 工業技術研究院, 2016.
[5] 蔣世安 and 林高州, "工業廢水除氮理方式探討及經驗分享," 台灣世曦工程顧問股份有限公司, 2012.
[6] J. Chen, H. Shi, and J. Lu, "Electrochemical treatment of ammonia in wastewater by RuO2–IrO2–TiO2/Ti electrodes," Journal of Applied Electrochemistry, vol. 37, no. 10, pp. 1137-1144, 2007.
[7] M.-H. Yuan, Y.-H. Chen, J.-Y. Tsai, and C.-Y. Chang, "Removal of ammonia from wastewater by air stripping process in laboratory and pilot scales using a rotating packed bed at ambient temperature," Journal of the Taiwan Institute of Chemical Engineers, vol. 60, pp. 488-495, 2016.
[8] S. Montalvo, L. Guerrero, R. Borja, E. Sánchez, Z. Milán, I. Cortés, and M. Angeles de la la Rubia, "Application of natural zeolites in anaerobic digestion processes: A review," Applied Clay Science, vol. 58, pp. 125-133, 2012.
[9] Z. Ye, H. Zhang, X. Zhang, and D. Zhou, "Treatment of landfill leachate using electrochemically assisted UV/chlorine process: Effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis," Chemical Engineering Journal, vol. 286, pp. 508-516, 2016.
[10] 唐存宏, "工業廢水氨氮處理概述," 財團法人台灣產業服務基金會, 2016.
[11] 洪雅伶, "電化學氧化法去除水中氨之研究," 國立臺灣科技大學 2019.
[12] J. Arogo, P. Westerman, A. Heber, W. Robarge, and J. Classen, "Ammonia Emissions from Animal Feeding Operations," Animal Agriculture and the Environment: National Center for Manure and Animal Waste Management White Papers, 2002.
[13] P. Mandal, B. K. Dubey, and A. K. Gupta, "Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope," Waste Management, vol. 69, pp. 250-273, 2017.
[14] L. Candido, J. A. Ponciano Gomes, and H. Jambo, "Electrochemical Treatment of Oil Refinery Wastewater for NH3-N And COD Removal," International Journal of Electrochemical Science, vol. 8, pp. 9187-9200, 2013.
[15] A. Cabeza, A. Urtiaga, M.-J. Rivero, and I. Ortiz, "Ammonium removal from landfill leachate by anodic oxidation," Journal of Hazardous Materials, vol. 144, no. 3, pp. 715-719, 2007.
[16] M. Panizza and G. Cerisola, "Direct And Mediated Anodic Oxidation of Organic Pollutants," Chemical Reviews, vol. 109, no. 12, pp. 6541-6569, 2009.
[17] F. Aloui, F. Fki, S. Loukil, and S. Sayadi, "Application of combined membrane biological reactor and electro-oxidation processes for the treatment of landfill leachates," Water Science and Technology, vol. 60, no. 3, pp. 605-614, 2009.
[18] R. Cossu, A. M. Polcaro, M. C. Lavagnolo, M. Mascia, S. Palmas, and F. Renoldi, "Electrochemical Treatment of Landfill Leachate:  Oxidation at Ti/PbO2 and Ti/SnO2 Anodes," Environmental Science & Technology, vol. 32, no. 22, pp. 3570-3573, 1998.
[19] F. Feki, F. Aloui, M. Feki, and S. Sayadi, "Electrochemical oxidation post-treatment of landfill leachates treated with membrane bioreactor," Chemosphere, vol. 75, no. 2, pp. 256-260, 2009.
[20] L.-n. Wu, D.-w. Liang, Y.-y. Xu, T. Liu, Y.-z. Peng, and J. Zhang, "A robust and cost-effective integrated process for nitrogen and bio-refractory organics removal from landfill leachate via short-cut nitrification, anaerobic ammonium oxidation in tandem with electrochemical oxidation," Bioresource Technology, vol. 212, pp. 296-301, 2016.
[21] N. Mirza, "Minimizing Trihalomethane Formation through Source Water Monitoring and Optimizing Treatment Practices Monitoring and Optimizing Treatment Practices," 2019.
[22] Y. Chu, Q. Zhang, and D. Xu, "Advanced treatment of landfill leachate from a sequencing batch reactor (SBR) by electrochemical oxidation process," Journal of Environmental Engineering and Science, vol. 7, no. 6, pp. 627-633, 2008.
[23] B. Zhou, Z. Yu, Q. Wei, H. Long, Y. Xie, and Y. Wang, "Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode," Applied Surface Science, vol. 377, pp. 406-415, 2016.
[24] 姚洋羽, "離子交換法處理含氫氟酸與氟矽酸的半導體廢水之研究," 元智大學化學工程學系, 2003.
[25] R. V. Thurston, R. C. Russo, and K. Emerson, Aqueous Ammonia Equilibrium Calculations. Fisheries Bioassay Laboratory, Montana State University, 1974.
[26] S. H. Lin and C. L. Wu, "Ammonia Removal from Aqueous Solution by Ion Exchange," Industrial & Engineering Chemistry Research, vol. 35, no. 2, pp. 553-558, 1996.
[27] 傅正貴, 李玫, 許哲彰, and 王俊元, "創新氨氮廢水資源化," 台灣積體電路製造股份有限公司, 2016.
[28] 郭維庭, "超重力系統結合電解法去除水中氨之研究," 國立台灣科技大學, 2021.
[29] M. Jafari, R. Ghasemi, Y. Mehrabi, A. Yazdanbakhsh, and M. Hajibabaei, "Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower," Iranian Journal of Environmental Health Science & Engineering, vol. 9, p. 20, 2012.
[30] P. H. Liao, A. Chen, and K. V. Lo, "Removal of nitrogen from swine manure wastewaters by ammonia stripping," Bioresource Technology, vol. 54, no. 1, pp. 17-20, 1995.
[31] B. Liu, A. Giannis, J. Zhang, V. W. C. Chang, and J.-Y. Wang, "Air stripping process for ammonia recovery from source-separated urine: modeling and optimization," Journal of Chemical Technology & Biotechnology, vol. 90, no. 12, pp. 2208-2217, 2015.
[32] A. Hasanoğlu, J. Romero, B. Pérez, and A. Plaza, "Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration," Chemical Engineering Journal, vol. 160, no. 2, pp. 530-537, 2010.
[33] 張群岳, "電解氧化法降解氨氮廢水之研究," 朝陽科技大學環境工程與管理系, 2014.
[34] Z. Zhu, Z. Hao, Z. Shen, and J. Chen, "Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors," Journal of Membrane Science, vol. 250, no. 1, pp. 269-276, 2005.
[35] L. Wu, M. Shen, J. Li, S. Huang, Z. Li, Z. Yan, and Y. Peng, "Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal," Environmental Pollution, vol. 254, p. 112965, 2019.
[36] 呂佳原, "pH值及氯離子對電化學去除氨氮的影響," 逢甲大學環境工程與科學學系, 2015.
[37] 郭俊毅, "結合部分硝化反應及厭氧氨氧化作用去除廢水中氨氮之研究," 逢甲大學環境工程與科學學系, 2016.
[38] 南化集團研究院, "化學沉澱法處理氨氮廢水," 中華人民共和國, 2008.
[39] C. Di Iaconi, M. Pagano, R. Ramadori, and A. Lopez, "Nitrogen recovery from a stabilized municipal landfill leachate," Bioresource Technology, vol. 101, no. 6, pp. 1732-1736, 2010.
[40] P. W. T. A. Group, "Understanding Breakpoint Chlorination," Pool Water Treatment Advisory Group, 2018.
[41] G. J. Kirmeyer, K. Martel, G. Thompson, L. Radder, W. Klement, M. LeChevallier, H. Baribeau, and A. Flores, Optimizing Chloramine Treatment. 2nd edition. AWWA Research Foundation and American Water Works Association, 2004.
[42] 楊學明, "高濃度氫氟酸廢液回收製備氟化鈣之研究-以結晶矽太陽能電池廠為例," 國立中央大學, 2015.
[43] 陳鴻烈 and 鄭慧玲, "電解氧化法去除飲用水源中有機物影響因子之研究," 農林學報, vol. 44, pp. 57-69, 1995.
[44] Y. Liu, L. Li, and R. Goel, "Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions," Journal of Hazardous Materials, vol. 167, no. 1, pp. 959-965, 2009.

無法下載圖示 全文公開日期 2030/08/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE