簡易檢索 / 詳目顯示

研究生: 潘睿澤
Ruei-Ze Pan
論文名稱: 含對稱翼型和對稱唇型裂紋平板承受機械和熱流負載下之應力強度因子分析與破裂角度預測
Stress Intensity Factors and Failure Initiation for an Infinite Plate with a Symmetric Airfoil Crack or a Symmetric Lip Crack under Mechanical and Thermal Loading
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 沈明河
Ming-He Shen
張瑞慶
Rwei-Ching Chang
黃榮芳
Rong-Fung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 80
中文關鍵詞: 平面應力強度因子保角映射法解析連續熱流機械力應變能理論
外文關鍵詞: In-plane, Stress intensity factors, Conformal mapping, Analytical continuation, Heat flow, Mechanical loads, Strain energy density criterion
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於二維平面彈性理論和複變理論的概念下,本文主要研究在遠端均勻機械力和熱流負載下對稱翼型裂紋和對稱唇形裂紋之應力強度因子及破裂角度分析。透過保角應射法,將對稱翼型及對稱唇形裂紋轉換成同心圓孔洞,並利用溫度函數和應力函數求解相關的邊界條件問題。透過引入輔助函數和解析連續的概念,可以求得對稱翼型和對稱唇形裂紋尖端的應力強度因子。求得應力強度因子後,便可透過應變能理論計算出裂紋的破裂角度。應力強度因子和破裂角度的大小取決於機械力和熱流組合的不同,其中某些組合會導致應力強度因子和破裂角度變大。本文提供了不同負載下的應力強度因子以及破壞角度並以圖表表示之。


    Based on the two-dimensional isotropic elasticity and complex variable theory, a general analytical solution for a symmetric airfoil crack and a symmetric lip crack embedded in an infinite plate under a remote uniform mechanical loading and heat flow is provided in this article. According to the method of conformal mapping, a symmetric airfoil crack and a symmetric lip crack are mapped onto a unit circle and both the temperature and stress potentials are used to solve the relevant boundary value problems. Based on the auxiliary function and the analytical continuation theorem, the stress intensity factors (SIFs) at the symmetric airfoil crack tip and symmetric lip crack tip can be obtained analytically. After the SIFs are obtained, the fracture angle of the crack can be determined by using the strain energy density criterion. The obtained results of SIFs and fracture angle are found to be dependent of the magnitude of mechanical and thermal load. For some combinations of mechanical and thermal load, the SIFs will take a maximum value representing the most dangerous situation and the corresponding fracture angle will also be obtained and discussed in detail.

    中文摘要 I ABSTRACT II 致謝 III Table of Contents IV List of figures VI Explanation of Symbols XII Chapter 1 Introduction 1 1.1 Research motivation 1 1.2 Literature review 1 1.3 Research method 3 Chapter 2 Problem formulation 5 2.1 Two-dimensional isotropic thermoelasticity theory 5 2.2 Temperature potential energy function 5 2.3 Auxiliary stress function 6 2.4 Mapping function 6 2.5 Analytic functions 7 2.6 Analytic continuation theorem 7 2.7 Stress intensity factors 8 2.8 Strain energy density criterion 8 Chapter 3 Temperature field solution 13 3.1 Problem Description 13 3.2 Derivation of temperature field 13 3.2.1 Symmetric airfoil crack 13 3.2.2 Symmetric lip crack 14 Chapter 4 Stress field solution 16 4.1 Problem Description 16 4.2 Derivation of stress field 16 4.2.1 Symmetric airfoil crack 16 4.2.2 Symmetric lip crack 19 4.3 Numerical solution 24 Chapter 5 Strain energy density criterion 25 5.1 Preliminary Remarks 25 5.2 Fracture mechanics discipline 26 Chapter 6 Finite Element Method 31 6.1 Modeling 31 6.2 Material parameters and grid 31 6.3 Boundary conditions 31 6.4 Method 32 Chapter 7 Result and Discussion 37 7.1 Result of temperature field 37 7.1.1 Analytical solution of temperature field for the symmetric airfoil crack 37 7.1.2 Verification of temperature field by finite element analysis for the symmetric airfoil crack 37 7.1.3 Analytical solution of temperature field for the symmetric lip crack 37 7.1.4 Verification of temperature field by finite element analysis for the symmetric lip crack 38 7.2 The SIFs with different conditions 38 7.2.1 Analytical solution of SIFs for the symmetric airfoil crack and the symmetric lip crack 38 7.2.2 Finite element solution of SIFs for the symmetric airfoil crack and the symmetric lip crack 40 7.3 The fracture angle of symmetric airfoil crack and symmetric lip crack 40 7.3.1 Fracture angle for the symmetric airfoil crack 41 7.3.2 Fracture angle for the symmetric lip crack 42 7.4 Discussion of the result 43 7.4.1 Discussion of temperature field 43 7.4.2 Discussion of SIFs 43 7.4.3 Discussion of fracture angle 43 Chapter 8 Conclusion and future prospects 76 8.1 Conclusion 76 8.2 Future prospects 77 References 78 Appendix 80

    [1]Inglis, C. E., “Stresses in a Plate Due to the Presence of Cracks and Sharp Corners,” Transactions of the Royal Institute of Naval Architectes, 60, pp. 219-241 (1913).
    [2]Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff Ltd., Groningen, Holland (1953).
    [3]Florence A.L. and Goodier J.N., Thermal Stresses due to disturbance of Uniform Heat flow by an Insulated Ovaloid Hole, J. Appl. Mech. 27, pp.635-639 (1960).
    [4]Chen, Y. Z., “Elastic Analysis of an Infinite Plate Containing Hole with Cusps and Applied by Concentrated Forces,” Engineering Fracture Mechanics, 20, pp. 573-582 (1964).
    [5]Chen, Y.Z, Thermal Stress Analysis for a Hypocycloid-type Crack Problem under Remote Thermal Loading,” Journal of Mechanics, 44, pp. 634-641 (2021).
    [6]Chao, C. K., Lu, L. M., Chen, C. K., and Chen, F. M., “Analytical Solution for a Reinforcement Layer in a Coated Elliptic Hole Under a remote Uniform Load,” International Journal of Solids and Structures, 46, pp. 2959-2965 (2009).
    [7]Chao, C. K., Tseng, S. C., and Chen, F. M., “An Analytical Solution to a Coated Triangular Hole Embedded in an Infinite Plate Under a Remote Uniform Heat Flow,” Journal of Thermal Stresses, 41, pp. 1259-1275 (2018).
    [8]Tseng, S. C., Chao, C. K., and Chen, F. M., “Interfacial Stresses of a Coated Square Hole Induced by a Remote Uniform Heat Flow,” International Journal of Applied Mechanics, 12, pp. 2050063(1)-2050063(26) (2020).
    [9]Tseng, S. C., Chao, C. K., Chen, F. M., and Chiu, W. C., “Interfacial Stresses of a Coated Polygonal Hole Under a Point Heat Source,” Journal of Thermal Stresses, 43, pp. 1259-1275 (2020).
    [10]Sih GC. On the Singular Character of Thermal Stresses Near a Crack Tip. ASME Journal of Applied Mechanics; 29, pp. 587–589 (1962).
    [11]Chao, C. K., and Kuo, L. Y., "Thermoelastic Problem of Curvilinear Crack with a Point Heat Source", Journal of Thermal Stresses, 17(2), pp. 271-283 (1994).
    [12]Chen, Y.Z., Hasebe, N., Lee, K.Y.: Multiple Crack Problems in Elasticity. WIT Press, Southampton (2003).
    [13]Shahzad, S., Corso, F.D., Bigoni, D.: Hypocycloidal Inclusions in Nonuniform Out-of-Plane Elasticity: Stress Singularity vs. Stress Reduction. J. Elast. 126, pp. 215–229 (2017).
    [14]Zhu N, Oterkus E. Calculation of Stress Intensity Factor using Displacement Extrapolation Method in Peridynamic Framework. Journal of Mechanics;36, pp.235–243 (2020).
    [15]Chao, C. K., Chen, F. M., and Lin, T. H., “Stress Intensity Factors for Fibrous Composite with a Crack Embedded in an Infinite Matrix under a Remote Uniform Load”, Engineering Fracture Mechanics, 179, pp. 294-313 (2017).
    [16]You-Shemg,D,Long, L., Li-Qing, M., Cheng-Pu,P., Mode-I stress intensity factors for cracked R-fluted shells under complex loads (2021).
    [17]Chao, C. K., and Chen, S. J., "Stress Intensity Factors of Two Bonded Half Plane Problem with a Point Heat Source", Nuclear Engineering and Design, 160(1), pp. 97-109 (1996).
    [18]Chen, Y. Z., “Fracture Analysis for a Symmetric airfoil crack Problem” Acta Mechanica, 231, pp. 3123-3128 (2020).
    [19]Tseng, S. C., Chao, C. K., and Chen, F. M., “Stress Field for a Coated Triangle-Like Hole Problem in Plane Elasticity,” Journal of Mechanics, 36, pp. 55-72 (2020).
    [20]Chauhan M. M., Sharma, D. S., and Dave, J. M., “Stress Intensity Factor for Hypocycloidal Hole with Cusps in Finite Plate,” Theoretical and Applied Fracture Mechanics, 82, pp. 59-68 (2016).
    [21]Nik Long, N.M.A., Yaghobifar, M.: General analytical solution for stress intensity factor of a hypocycloid hole with many cusps in an infinite plate. Philos. Mag. Lett. 91, pp.256–263 (2011).
    [22]Sharma, D. S., and Dave, J. M., “Stress Intensity Factors for Hypocycloidal Hole with Cusps in Infinite Anisotropic Plate,” Theoretical and Applied Fracture Mechanics, 75, pp. 44-52 (2015).

    無法下載圖示 全文公開日期 2025/06/27 (校內網路)
    全文公開日期 2027/06/27 (校外網路)
    全文公開日期 2027/06/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE