簡易檢索 / 詳目顯示

研究生: 丁詮峰
Chuan-Fong Ting
論文名稱: 基於三維環線法之傘齒輪面銑式切削模擬
FACE-MILLING CUTTING SIMULATION OF BEVEL GEARS BASED ON THREE-DIMENSIONAL CIRCLE METHOD
指導教授: 石伊蓓
Hyi-Pei Shi
口試委員: 李維楨
Wei-Chen Lee
黃金龍
Chin-Lung Huang
陳冠辰
Guan-Chen Chen
陳思宏
Szu-Hung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 傘齒輪面銑式切製法切削模擬射線法三維環線法三角網格體積移除率
外文關鍵詞: bevel gear, face milling, cutting simulation, Dexel-ray method, three-dimensional-circle method, triangles, material removal rate
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

傘齒輪的製造方式主要分為面銑式切製法以及面滾式切製法,由於面銑式切製法適用於研磨加工,導致使用其切製法生產出來的齒輪精度較高,因此工業界較常選擇以面銑式切製法的加工方式來加工齒輪。在近十年裡,面銑式切製法使用的是五軸加工機來進行切削加工,但由於五軸加工機的加工路徑為較複雜的非線性加工路徑,因此為了避免在切削過程中機台產生碰撞,需要預先透過切削模擬來確認刀具路徑、NC加工碼以及被加工齒輪齒面的正確性。
早期大多數切削模擬軟體是使用體素法(Voxel)配合MC(Marching Cube)演算法的形式來當作切削模擬軟的運算核心,然而MC(Marching Cube)演算法中需要使用到的布林(Boolean)運算會大大的延緩切削模擬軟體的模擬時間。為了改善模擬時間過長的問題,近期許多的論文選擇以射線(Dexel-Ray)的形式來加快切削模擬的模擬時間,而本論文則是提出一套以三維環線取代體素切削的傘齒輪切削模擬,透過三維環線來建構的齒胚,並根據切削位置將三維環線與刀具面數學模式的交點求出,最後透過三角網格鋪面的方式來建構切削的齒輪。此切削模擬的方式適用於面銑式切製法中的成形法加工以及創成法加工,並可以透過此方法來計算成形法加工以及創成法加工時的體積移除率,最後將切削完成的齒面與理論齒面進行齒面誤差比對,以驗證切削模擬方法的正確性。


Face milling and face hobbing are mainly cutting methods for spiral bevel and hypoid gears. Because the face milling method can be used in grinding, the produced gear has higher precision. Therefore, the face milling method is widely used in the industry. In decades, this cutting method has been implemented on a five-axis CNC machine tool. Its cutting path with five nonlinear coordinates is complicated. Therefore the NC codes need to be checked before actual cutting to avoid a collision. Moreover, the produced tooth surfaces are required to be inspected.
Early, the Voxel method and marching cube algorithm were adopted to simulate the bevel gear cutting process. However, it is time-consuming due to Boolean operation. To overcome this problem, recently, a new Dexel-ray method has been introduced in the literature. In this research, a three-dimensional-circle method is proposed to simulate bevel gear face-milling cutting. The gear blank is constructed by three-dimensional circles instead of Dexel rays. The interfering part between the tool and the gear blank is determined according to their cutting positions. And a set of triangles is used to represent the surface of the produced gear. This simulation method can be applied in plunge and generating processes of face milling. Moreover, the material removal rates of plunge and generating processes are calculated based on this method. Finally, the tooth flank deviations are evaluated between the produced and theoretic tooth surfaces. The results confirm the correctness of the proposed method.

目 錄 指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 謝 誌 V 目 錄 VI 符號索引 VIII 圖索引 X 表索引 XII 第1章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究目的 4 1.4 文獻回顧 4 1.5 論文架構 6 第2章 面銑式傘齒輪齒面數學模式 7 2.1 前言 7 2.2 傘齒輪齒胚設計與參數計算 7 2.3 面銑式傘齒輪刀具數學模式 8 2.4 泛用型搖台式傘齒輪切齒機機械設定 10 2.5 傘齒輪齒面數學模式 11 2.6 數值範例 13 2.7 小結 16 第3章 面銑式傘齒輪加工工序規劃 17 3.1 前言 17 3.2 成形法加工工序 17 3.3 創成法加工工序 18 3.4 小結 21 第4章 三維環線法之面銑式傘齒輪成形法切削模擬數學模式 22 4.1 前言 22 4.2 三維環線傘齒輪切削模擬法 22 4.3 成形法切削模擬流程 24 4.4 刀具面數學模式 26 4.5 建立齒胚三維環狀線 26 4.6 解成形法之刀具面與齒胚三維環狀線交點 30 4.7 切削齒面三角網格鋪面 33 4.8 齒頂三角網格鋪面 34 4.9 大端和小端三角網格補面 40 4.10 齒面誤差分析 44 4.11 數值範例 45 4.12 小結 51 第5章 三維環線法之面銑式傘齒輪創成法切削模擬數學模式 52 5.1 前言 52 5.2 創成法切削模擬流程 52 5.3 解創成法之刀具面與齒胚三維環狀線交點 54 5.4 數值範例 56 5.5 小結 61 第6章 體積移除率計算公式推導 62 6.1 前言 62 6.2 三角網格面體積移除計算 62 6.3 體積移除率 64 6.4 數值範例 65 6.5 小節 69 第7章 結果與討倫 70 7.1 結果與討論 70 7.2 建議與未來展望 71 參考文獻 72

參考文獻
[1] ANSI/AGMA ISO 23509-A08, 2008, “Bevel and Hypoid Gear Geometry”, Alexandria, USA.
[2] Gleason Works, 1971, “Calculation Instructions — Generated Spiral Bevel Gears, Duplex–Helical Method, Including Grinding”, Rochester, NY.
[3] 董學朱,2002,擺線齒錐齒輪及準雙曲面齒輪設計和製造,機械工業出版社,北京。
[4] Litvin, F. L., Zhang, Y., Lundy, M., and Heine, C., 1988, "Determination of settings of a tilted head cutter for generation of hypoid and spiral bevel gears," Journal of Mechanisms Transmissions and Automation in Design, 110(4), pp. 495-500.
[5] Litvin, F., and Gutman, Y., 1981, "Methods of Synthesis and Analysis for Hypoid Gear-Drives of “Formate” and “Helixform”—Part 1. Calculations For Machine Settings For Member Gear Manufacture of the Formate and Helixform Hypoid Gears " Journal of Mechanical Design, 103, pp. 89-101.
[6] Fong, Z. H., and Tsay, C. B., 1991, "A Mathematical Model for the Tooth Geometry of Circular-Cut Spiral Bevel Gears," Journal of Mechanical Design, 113(2), pp. 174-181.
[7] Lin, C. Y., Tsay, C. B., and Fong, Z. H., 1997, "Mathematical model of spiral bevel and hypoid gears manufactured by the modified roll method," Mechanism and Machine Theory, 32(2), pp. 121-136.
[8] Fong, Z. H., and Tsay, B. C. B., 1991, "A Study on the Tooth Geometry and Cutting Machine Mechanisms of Spiral Bevel Gears," Journal of Mechanical Design, 113(3), pp. 346-351.
[9] Fong, Z. H., 2000, "Mathematical Model of Universal Hypoid Generator With Supplemental Kinematic Flank Correction Motions," Journal of Mechanical Design, 122(1), pp. 136-142.
[10] Shih, Y. P., Fong, Z. H., and Lin, G. C. Y., 2006, "Mathematical Model for a Universal Face Hobbing Hypoid Gear Generator," Journal of Mechanical Design, 129(1), pp. 38-47.
[11] Lorensen, W. E., and Cline, H. E., 1987, "Marching cubes: A high resolution 3D surface construction algorithm," Proc. Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 163-169.
[12] 蔡孟杰,2006,適應性3D模型應用於多軸模擬與虛擬雕刻系統,國立中正大學碩士,嘉義市。
[13] Gottschalk, S., Lin, M., and Manocha, D., 1997, "OBBTree: A Hierarchical Structure for Rapid Interference Detection," Computer Graphics, 30.
[14] Eberly, D., 2001, "Dynamic Collision Detection using Oriented Bounding Boxes," Mathematics.
[15] Ericson, C., 2014, "Real-Time Collision Detection", Morgan Kaufmann Pub.
[16] Hook, T. V., 1986, "Real-time shaded NC milling display," Proc. Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 15-20.
[17] 高新瑞,張樹生,侯增選,2007,多面體三向DEXEL模型與布林運算,計算機工程應用,第43卷,第12期,第7-9頁。
[18] Zhang, W., Peng, X., Leu, M. C., and Zhang, W., 2007, "A Novel Contour Generation Algorithm for Surface Reconstruction From Dexel Data," Journal of Computing and Information Science in Engineering, 7(3), pp. 203-210.
[19] Inui, M., Huang, Y., Onozuka, H., and Umezu, N., 2020, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation," Procedia Manufacturing, 48, pp. 520-527.
[20] Katz, A., 2017, "Cutting Mechanics of the Gear Shaping Process," UWSpace.
[21] Warkentin, A., Ismail, F., and Bedi, S., 1998, "Intersection approach to multi-point machining of sculptured surfaces," Comput. Aided Geom. Des., 15(6), pp. 567–584.
[22] Warkentin, A., Ismail, F., and Bedi, S., 2000, "Multi-point tool positioning strategy for 5-axis mashining of sculptured surfaces," Comput. Aided Geom. Des., 17, pp. 83-100.
[23] Suh, S. H., Jih, W. S., Hong, H. D., and Chung, D. H., 2001, "Sculptured surface machining of spiral bevel gears with CNC milling," International Journal of Machine Tools and Manufacture, 41(6), pp. 833-850.
[24] Xu, Y., Zhang, L., Wei, W., and Wang, L., 2009, "Virtual Simulation Machining on Spiral Bevel Gear with New Type Spiral Bevel Gear Milling Machine," Proc. International Conference on Measuring Technology and Mechatronics Automation, pp. 432-435.
[25] Wang, T., Xing, Y., Zhao, L., and Li, Q., 2011, "NC machining of spiral bevel gear and hypoid gear based on unity transformation model," Transactions of Tianjin University, 17, pp. 264-269.
[26] 陳冠廷,2020,應用擠製方法之螺旋傘齒輪面銑式加工模擬,碩士,國立臺灣科技大學,台北市。
[27] 王泉德,2009,任意三角網格模型體積的快速精確計算方法,武漢大學電子信息學院。
[28] Chen, S. H., and Fong, Z. H., 2015, "Study on the cutting time of the hypoid gear tooth flank," Mechanism and Machine Theory, 84, pp. 113-124.
[29] 顏楷倫,2013,模造螺旋傘齒輪設計,碩士,國立台灣科技大學,台北市。

無法下載圖示 全文公開日期 2031/10/27 (校內網路)
全文公開日期 2031/10/27 (校外網路)
全文公開日期 2031/10/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE