簡易檢索 / 詳目顯示

研究生: 王冠崴
Kuan-Wei Wang
論文名稱: 基於IEEE 802.15.4a/z之脈衝超寬頻發送器實現與時序同步電路設計
Design and Implementation of an IR-UWB Transmitter and Timing Synchronization Circuit based on IEEE 802.15.4a/z
指導教授: 沈中安
Chung-An Shen
口試委員: 吳晉賢
Chin-Hsien Wu
黃琴雅
Chin-Ya Huang
陳永耀
Yung-Yao Chen
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 89
中文關鍵詞: IEEE 802.15.4a/zHRP UWB PHY數位基頻IR-UWB發送器時序同步電路FPGA
外文關鍵詞: IEEE 802.15.4a/z, HRP UWB PHY, Digital baseband, IR-UWB Transmitter, Timing Synchronization, FPGA
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

脈衝超寬頻(Impulse-Radio UWB)通訊是一種使用脈衝訊號進行短距離無線訊號傳輸的技術,除了進行數據傳輸外,也因為其奈秒(ns)等級的脈衝訊號特性,可以進行精準的測距以及定位,讓這項技術可以應用在許多新興領域,如免持鑰匙、智慧家庭以及各種物聯網應用。而脈衝超寬頻通訊在電路實現上有許多困難,如電路的高運作頻率、大頻寬的資料量以及高設計複雜度的規格...等。因此,在本論文中將設計與實現一個基於IEEE 802.15.4a/z HRP UWB PHY的數位基頻發送器與接收端的時序同步(Timing Synchronization)電路。整體電路會使用平行化的電路設計技巧來克服實現的困難,並且針對IEEE 802.15.4a/z標準進行分析,找出設計的瓶頸並優化高複雜度的電路,進行模組分工並根據特殊功能需求進行優化。本論文所提出的設計將會實現在Xilinx ZC706 FPGA中並結合MATLAB環境進行完整規格與功能驗證。


Impulse-Radio ultrawideband (IR-UWB) communication technology is a short-range wireless signal transmission technique that utilizes impulse signals for communication. In addition to data transmission, it is capable of precise ranging and localization due to its nanosecond-level pulse signal characteristics. This makes it applicable in emerging fields such as keyless entry systems, smart homes, and the Internet of Things (IoT). However, implementing IR-UWB communication faces challenges such as high operating frequencies, large bandwidth data, and complex design requirements. Therefore, this paper aims to design and implement a digital baseband transmitter and a timing synchronization circuit for receiver based on the IEEE 802.15.4a/z HRP UWB PHY. The overall circuit utilizes parallelization techniques to overcome implementation challenges and optimizes high-complexity circuits by analyzing the IEEE 802.15.4a/z standard, identifying design bottlenecks, and optimizing modules based on specific functional requirements. The proposed design will be implemented on the Xilinx ZC706 FPGA platform and validated using MATLAB environment for comprehensive specification and functional verification.

Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 IEEE 802.15.4a/z HRP UWB PHY . . . . . . . . . . . . . 6 2.1.1 Operation Modes of HRP UWB PHY . . . . . . . 8 2.1.2 Packet Format of HRP UWB PHY . . . . . . . . . 9 2.1.3 Modulations of HRP UWB PHY . . . . . . . . . . 16 2.2 Timing Synchronization . . . . . . . . . . . . . . . . . . 20 2.2.1 Concepts of Timing Synchronization . . . . . . . 20 2.2.2 Related Work . . . . . . . . . . . . . . . . . . . . 21 3 Proposed Transmitter Architecture . . . . . . . . . . . . . . . . 24 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 PPDU Data Generator . . . . . . . . . . . . . . . . . . . . 25 3.2.1 PHR Generator and SECDED Encoder . . . . . . 26 3.2.2 Reed Solomon Encoder . . . . . . . . . . . . . . . 27 3.2.3 Bit Ordering Unit . . . . . . . . . . . . . . . . . . 29 3.3 Convolutional Encoder . . . . . . . . . . . . . . . . . . . 31 3.4 Symbol Mapper . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 SHR Generator . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 STS Generator . . . . . . . . . . . . . . . . . . . . . . . 39 3.7 TX PHY Integration . . . . . . . . . . . . . . . . . . . . 40 3.7.1 Controller and FSM . . . . . . . . . . . . . . . . 41 3.7.2 TX PHY Interface . . . . . . . . . . . . . . . . . 44 4 Proposed IR-UWB Timing Synchronization Circuit . . . . . . . 45 4.1 Timing Synchronization Algorithm . . . . . . . . . . . . . 46 4.1.1 Correlation Calculation . . . . . . . . . . . . . . . 46 4.1.2 2-stage Synchronization Method . . . . . . . . . . 50 4.2 Timing Synchronization Architecture . . . . . . . . . . . 52 4.2.1 Sample Buffer . . . . . . . . . . . . . . . . . . . 53 4.2.2 Data Multiplexing Unit . . . . . . . . . . . . . . . 54 4.2.3 SYNC Correlation Unit . . . . . . . . . . . . . . . 55 4.2.4 2-stage Synchronization Unit . . . . . . . . . . . . 59 4.2.5 Sample Alignment Unit . . . . . . . . . . . . . . 61 5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 62 5.1 UWB Transmitter Results . . . . . . . . . . . . . . . . . . 62 5.1.1 Environment Setup . . . . . . . . . . . . . . . . . 62 5.1.2 Implementation Results . . . . . . . . . . . . . . 63 5.2 Time Synchronization Results . . . . . . . . . . . . . . . 66 5.2.1 Implementation Results . . . . . . . . . . . . . . 67 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

[1] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-2020 (Revision of IEEE Std 802.15.4-2015), pp. 1–800, 2020.
[2] “IEEE Standard for Low-Rate Wireless Networks–Amendment 1: Enhanced Ultra Wideband (UWB) Physical Layers (PHYs) and Associated Ranging Techniques,” IEEE Std 802.15.4z-2020 (Amendment to IEEE Std 802.15.4-2020), pp. 1–174, 2020.
[3] J.-S. Lee, Y.-W. Su, and C.-C. Shen, “A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” in IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, 2007, pp. 46–51.
[4] IEEE 802.15.3a WPAN Task Group. Accessed: May 2023. [Online]. Available: http://www.ieee802.org/15/pub/TG3a.html
[5] V. Niemelä, J. Haapola, M. Hämäläinen, and J. Iinatti, “An Ultra Wideband Survey: Global Regulations and Impulse Radio Research Based on Standards,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 874–890, 2017.
[6] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs, and E. Aboutanios, “Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications,” IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1327–1346, 2017.
[7] S. Gezici, Z. Tian, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 70–84, 2005.
[8] A. Kalyanaraman, Y. Zeng, S. Rakshit, and V. Jain, “CaraoKey : Car States Sensing via the Ultra-Wideband Keyless Infrastructure,” in 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), 2020, pp. 1–9.
[9] Y. Zhang and L. Duan, “Toward Elderly Care: A Phase-Differenceof-Arrival Assisted Ultra-Wideband Positioning Method in Smart Home,” IEEE Access, vol. 8, pp. 139 387–139 395, 2020.
[10] P. Sedlacek, M. Slanina, and P. Masek, “An Overview of the IEEE 802.15.4z Standard its Comparison and to the Existing UWB Standards,” in 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA), 2019, pp. 1–6.
[11] J. Singh, S. Ponnuru, and U. Madhow, “Multi-Gigabit communication: the ADC bottleneck1,” in 2009 IEEE International Conference on Ultra-Wideband, 2009, pp. 22–27.
[12] J. Lin, H. Chen, F. Ye, and J. Ren, “Digital baseband design for DCOFDM based UWB systems,” in 2013 International Conference on Computational Problem-Solving (ICCP), 2013, pp. 127–130.
[13] D. Kreiser and S. Olonbayar, “Design and ASIC implementation of an IR-UWB-baseband transceiver for IEEE 802.15.4a,” in 2011 International Conference on Wireless Communications and Signal Processing (WCSP), 2011, pp. 1–6.
[14] S. Olonbayar, D. Kreiser, and R. Kraemer, “Performance and implementation of a multi-rate IR-UWB baseband transceiver for IEEE802.15.4a,” in 2013 IEEE International Conference on UltraWideband (ICUWB), 2013, pp. 231–237
[15] ——, “FPGA and ASIC implementation and testing of IR-UWB baseband transceiver for IEEE802.15.4a,” in 2014 IEEE International Conference on Ultra-WideBand (ICUWB), 2014, pp. 456–461.
[16] D. Coppens, A. Shahid, S. Lemey, B. Van Herbruggen, C. Marshall, and E. De Poorter, “An Overview of UWB Standards and Organizations (IEEE 802.15.4, FiRa, Apple): Interoperability Aspects and Future Research Directions,” IEEE Access, vol. 10, pp. 70 219–70 241, 2022.
[17] Nearby Interaction with UWB. Accessed: May 2023. [Online]. Available: https://developer.apple.com/nearby-interaction/
[18] Qorvo. DW1000. Accessed: May 2023. [Online]. Available: https://www.qorvo.com/products/p/DW1000
[19] Qorvo. DW3110. Accessed: May 2023. [Online]. Available: https://www.qorvo.com/products/p/DW3110
[20] Z. Tian and G. Giannakis, “BER sensitivity to mistiming in ultrawideband impulse Radios-part I: nonrandom channels,” IEEE Transactions on Signal Processing, vol. 53, no. 4, pp. 1550–1560, 2005.
[21] N. He and C. Tepedelenlioglu, “Performance analysis of non-coherent UWB receivers at different synchronization levels,” IEEE Transactions on Wireless Communications, vol. 5, no. 6, pp. 1266–1273, 2006.
[22] D. Kreiser and S. Olonbayar, “Efficient Synchronization Method for IR-UWB 802.15.4a non-coherent Energy Detection Receiver,” in 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social Computing, 2010, pp. 521–526.
[23] M.-K. Oh and J.-Y. Kim, “Ranging Implementation for IEEE 802.15.4a IR-UWB Systems,” in VTC Spring 2008 - IEEE Vehicular Technology Conference, 2008, pp. 1077–1081.
[24] R. G. Lyons, Understanding Digital Signal Processing. Prentice Hall, 2010.
[25] AMD Zynq 7000 SoC ZC706 Evaluation Kit. Accessed: May 2023. [Online]. Available: https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
[26] A. F. Molisch, K. Balakrishnan, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, Johan, Karedal, J. Kunisch, H. G. Schantz, U. G. Schuster and K. Siwiak, “IEEE 802.15.4a Channel Model-Final Report,” Tech. Rep. Document IEEE 802.1504-0062-02-004a, 2005.

無法下載圖示 全文公開日期 2028/07/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2028/07/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE